1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/* ***** This package may be broken. Please use the VECT
package on the SHARE directory. - JPG 6/5/78 ***** */
vector:list$
for f in ["grad","div","curl","laplacian","curlgrad","graddiv",
"divcurl","curlcurl"] do prefix(f,112,expr,expr)$
infix("cross",112,112,expr,expr,expr)$
infix("dotdel",108,108,expr,expr,expr)$
nofix("christoffel",expr)$
dimension():=if dimension=3 then [1,2,3] else [1,2]$
type(arg):=if list= /* check required form of answer */
(if listp(arg) then /* operation performed on a vector */
(for element in arg do /* check each argument */
if listp(element) /* an argument is a list */
then return(list)) /* return a list */
else vector) /* operation performed on a scalar */
then result /* return a list */
else apply('matrix,[result]) /* return a matrix */$
_coordsystem&& coordsystem(sys):=
(if sys=rectangular then
(coodvar:[x,y],
scalefactor:[1,1])
else if sys=polar then
(coordvar:[r,th],
scalefactor:[1,r])
else if sys=cartesian then
(coordvar:[x,y,z],
scalefactor:[1,1,1])
else if sys=cylindrical then
(coordvar:[r,ph,z],
scalefactor:[1,r,1])
else if sys=spherical then
(coordvar:[r,th,ph],
scalefactor:[1,r,r*sin(th)])
else (coordvar:read("coordinate variables"),
scalefactor:read("scale factors")),
dimension:length(coordvar),
coordsystem:sys)$
coordsystem(cartesian)$
_cross&& (a cross b) := if dimension=3 then block([result],
result:[a[2]*b[3]-a[3]*b[2],
a[3]*b[1]-a[1]*b[3],
a[1]*b[2]-a[2]*b[1]],
type([a,b]))
else /* 2 dimensional case */
if nonscalarp(a) then
(if nonscalarp(b) then /* vector x vector */
a[1]*b[2]-a[2]*b[1]
else block([result], /* vector x scalar */
result:[a[2]*b,
-a[1]*b],
type([a])))
else block([result], /* scalar x vector */
result:[-a*b[2],
a*b[1]],
type([b]))$
_grad&& (grad s) := block([result],
result:map(lambda([i],
diff(s,coordvar[i])/scalefactor[i]),
dimension()),
type(vector))$
_div&& (div v) := if dimension=3 then
(diff(scalefactor[2]*scalefactor[3]*v[1],coordvar[1])+
diff(scalefactor[3]*scalefactor[1]*v[2],coordvar[2])+
diff(scalefactor[1]*scalefactor[2]*v[3],coordvar[3]))
/scalefactor[1]/scalefactor[2]/scalefactor[3]
else /* 2 dimensional case */
(diff(scalefactor[2]*v[1],coordvar[1])
+diff(scalefactor[1]*v[2],coordvar[2]))
/scalefactor[1]/scalefactor[2]$
_curl&& (curl a) := if dimension=3 then block([result],
result:[(diff(scalefactor[3]*a[3],coordvar[2])
-diff(scalefactor[2]*a[2],coordvar[3]))
/scalefactor[2]/scalefactor[3],
(diff(scalefactor[1]*a[1],coordvar[3])
-diff(scalefactor[3]*a[3],coordvar[1]))
/scalefactor[3]/scalefactor[1],
(diff(scalefactor[2]*a[2],coordvar[1])
-diff(scalefactor[1]*a[1],coordvar[2]))
/scalefactor[1]/scalefactor[2]],
type([a]))
else /* 2 dimensional case */
if nonscalarp(a) then block([result],
result:(diff(scalefactor[2]*a[2],coordvar[1])
-diff(scalefactor[1]*a[1],coordvar[2]))
/scalefactor[1]/scalefactor[2],
type([a]))
else block([result], /* scalar argument */
result:[diff(a,coordvar[2])/scalefactor[2],
-diff(a,coordvar[1])/scalefactor[1]],
type(vector))$
_laplacian&& (laplacian a) := if nonscalarp(a) then grad div a -curl curl a
else if dimension=3 then
(diff(diff(a,coordvar[1])*scalefactor[2]
*scalefactor[3]/scalefactor[1],coordvar[1])
+diff(diff(a,coordvar[2])*scalefactor[3]
*scalefactor[1]/scalefactor[2],coordvar[2])
+diff(diff(a,coordvar[3])*scalefactor[1]
*scalefactor[2]/scalefactor[3],coordvar[3]))
/scalefactor[1]/scalefactor[2]/scalefactor[3]
else /* 2 dimensional case */
(diff(diff(a,coordvar[1])*scalefactor[2]
/scalefactor[1],coordvar[1])
+diff(diff(a,coordvar[2])*scalefactor[1]
/scalefactor[2],coordvar[2]))/scalefactor[1]/scalefactor[2]$
_dotdel&& (v dotdel b) := if nonscalarp(b) then block([result],
result:if last(properties(christsym))=declared\ array
then /* use christoffel symbols */
map(lambda([j],
sum((diff(b[i]*scalefactor[j],
coordvar[i])-sum(b[k]*scalefactor[k]
*christsym[k,j,i],k,1,dimension))
*v[i]/scalefactor[i],i,1,dimension)
/scalefactor[j]),dimension())
else /* vector b, no christoffel symbols */
map(lambda[j],
sum(diff(b[i]*scalefactor[j],coordvar[i])
*v[i]/scalefactor[i],i,1,dimension)
/scalefactor[j],dimension()),
type([v,b]))
else block([result], /* scalar b case */
result:if last(properties(christsym))=declared\ array
then /* use christoffel symbols */
sum((diff(b,coordvar[i])-b*christsym[1,1,i])
*v[i]/scalefactor[i],i,1,dimension)
else /* no christoffel symbols */
sum(diff(b,coordvar[i])*v[i]
/scalefactor[i],i,1,dimension),
type([v]))$
_christoffel&& christoffel := (array(christsym,3,3,3),
christsym[i,j,k]:=0,
for i thru 3 do
(christsym[i,i,i]:diff(scalefactor[i],coordvar[i])
/scalefactor[i],
for j thru 3 do if j#i then
(christsym[i,j,i]:christsym[i,i,j]:diff(scalefactor[i],
coordvar[j])/scalefactor[i],
christsym[j,i,i]:-diff(scalefactor[i],
coordvar[j])*scalefactor[i]/scalefactor[j]^2)))$
(curlgrad s) := 0$
(graddiv v) := block([result],
result:div v,
result:map(lambda([i],
diff(result,coordvar[i])/scalefactor[i]),
dimension()),
type(vector))$
(divcurl v) := 0$
|