1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* execute this script
*
* (1) wait for user between examples:
* demo ("tests/rtest_plot.mac");
*
* (2) or noninteractively:
* batch ("tests/rtest_plot.mac");
*
* Maxima waits for the user to close the Openmath window
* before proceeding, but otherwise it just blazes through.
*/
/* Examples copied from plot2d documentation */
"Plots of common functions." $
plot2d (sin(x), [x, -5, 5])$
plot2d (sec(x), [x, -2, 2], [y, -20, 20], [nticks, 200])$
"Plotting functions by name." $
F(x) := x^2 $
:lisp (defun |$g| (x) (m* x x x))
H(x) := if x < 0 then x^4 - 1 else 1 - x^5 $
plot2d (F, [u, -1, 1])$
plot2d ([F, G, H], [u, -1, 1], [y, -1.5, 1.5])$
"We can plot a circle using a parametric plot ..." $
plot2d ([parametric, cos(t), sin(t), [t,-%pi,%pi], [nticks,80]], [x, -4/3, 4/3])$
"If we repeat that plot with only 8 points ..." $
plot2d ([parametric, cos(t), sin(t), [t, -%pi*2, %pi*2], [nticks, 8]], [x, -2, 2], [y, -1.5, 1.5])$
"Combination of an ordinary plot ..." $
plot2d ([x^3+2, [parametric, cos(t), sin(t), [t, -5, 5], [nticks, 80]]], [x, -3, 3])$
"Example of a logarithmic plot:" $
plot2d (exp(3*s), [s, -2, 2], [logy])$
"To show some examples of discrete plots, ..." $
xx:[10, 20, 30, 40, 50]$
yy:[.6, .9, 1.1, 1.3, 1.4]$
xy:[[10,.6], [20,.9], [30,1.1], [40,1.3], [50,1.4]]$
plot2d([discrete,xx,yy])$
"We will now show the plot with only points, ..." $
plot2d([discrete, xy], [style, points])$
"The plot of the data points can be shown together with ..." $
plot2d([[discrete,xy], 2*%pi*sqrt(l/980)], [l,0,50],
[style, [points,5,2,6], [lines,1,1]], [legend,"experiment","theory"],
[xlabel,"pendulum's length (cm)"], [ylabel,"period (s)"])$
"To save a plot ..." $
plot2d (sin(x), [x, 0, 2*%pi], [psfile, concat (maxima_tempdir, "/sin.eps")])$
"The next example uses the y option ..." $
plot2d ([gamma(x), 1/gamma(x)], [x, -4.5, 5], [y, -10, 10], [gnuplot_preamble, "set key bottom"])$
"We can also use a `gnuplot_preamble' to produce fancy x-axis labels." $
my_preamble: "set xtics ('-2pi' -6.283, \
'-3pi/2' -4.712, '-pi' -3.1415, '-pi/2' -1.5708, '0' 0, \
'pi/2' 1.5708, 'pi' 3.1415,'3pi/2' 4.712, '2pi' 6.283)"$
plot2d([cos(x), sin(x), tan(x), cot(x)], [x, -2*%pi, 2.1*%pi], [y, -2, 2],
[axes, x], [gnuplot_preamble, my_preamble]);
"... fancy x-axis labels, and produces PostScript output ..." $
my_preamble: "set xtics ('-2{/Symbol p}' \
-6.283, '-3{/Symbol p}/2' -4.712, '-{/Symbol p}' -3.1415, \
'-{/Symbol p}/2' -1.5708, '0' 0,'{/Symbol p}/2' 1.5708, \
'{/Symbol p}' 3.1415,'3{/Symbol p}/2' 4.712, '2{/Symbol p}' \
6.283)"$
plot2d ([cos(x), sin(x), tan(x)], [x, -2*%pi, 2*%pi],
[y, -2, 2], [gnuplot_preamble, my_preamble], [psfile, concat (maxima_tempdir, "/trig.eps")]);
/* Examples copied from plot3d documentation */
"Displays a plot of one or three expressions as functions of two variables." $
plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2]);
"The same graph can be plotted using openmath ..." $
plot3d (2^(-u^2 + v^2), [u, -3, 3], [v, -2, 2], [plot_format, openmath]);
"An example of the third pattern of arguments is" $
plot3d ([cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)),
y*sin(x/2)], [x, -%pi, %pi], [y, -1, 1], ['grid, 50, 15]);
"This example shows a plot of the real part of `z^1/3' ..." $
plot3d (r^.33*cos(th/3), [r, 0, 1], [th, 0, 6*%pi], ['grid, 12, 80],
['transform_xy, polar_to_xy], [box, false],[legend,false]);
"Other examples are the Klein bottle:" $
expr_1: 5*cos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0) - 10.0$
expr_2: -5*sin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)$
expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2*y))$
plot3d ([expr_1, expr_2, expr_3], [x, -%pi, %pi], [y, -%pi, %pi], ['grid, 40, 40]);
"and a torus:" $
expr_1: cos(y)*(10.0+6*cos(x))$
expr_2: sin(y)*(10.0+6*cos(x))$
expr_3: -6*sin(x)$
plot3d ([expr_1, expr_2, expr_3], [x, 0, 2*%pi], [y, 0, 2*%pi], ['grid, 40, 40]);
"Sometimes it is necessary to define a function to plot the expression." $
M: matrix([1, 2, 3, 4], [1, 2, 3, 2], [1, 2, 3, 4], [1, 2, 3, 3])$
f(x, y) := float (M [?round(x), ?round(y)])$
plot3d (f, [x, 1, 4], [y, 1, 4], ['grid, 4, 4])$
"Here is a three-dimensional plot using the gnuplot pm3d terminal." $
plot3d (atan (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4], [grid, 50, 50], [gnuplot_pm3d, true])$
"And a three-dimensional plot without a mesh and with contours ..." $
my_preamble: "set pm3d at s;unset surface;set contour;\
set cntrparam levels 20;unset key"$
plot3d(atan(-x^2 + y^3/4), [x, -4, 4], [y, -4, 4], [grid, 50, 50],
[gnuplot_pm3d, true], [gnuplot_preamble, my_preamble])$
"Finally, a plot where the z-axis is represented by color only." $
plot3d (cos (-x^2 + y^3/4), [x, -4, 4], [y, -4, 4],
[gnuplot_preamble, "set view map; unset surface"], [gnuplot_pm3d, true], [grid, 150, 150])$
/* Examples copied from plot_options documentation */
"Option: `plot_realpart'" $
plot2d (log(x), [x, -5, 5], [plot_realpart, false]);
plot2d (log(x), [x, -5, 5], [plot_realpart, true]);
/* further *plot-realpart* examples from mailing list 2010-08-13 "plot3d: function not defined everywhere in the plotting range" */
plot2d (log(x), [x, -3, 3]);
plot3d (log(x), [x, -3, 3], [y, -3, 3]);
contour_plot (log(x), [x, -3, 3], [y, -3, 3]);
/* (other options listed under plot_options do not have plot2d or plot3d examples) */
/* Examples copied from contour_plot documentation */
"contour_plot examples" $
contour_plot (x^2 + y^2, [x, -4, 4], [y, -4, 4]);
contour_plot (sin(y) * cos(x)^2, [x, -4, 4], [y, -4, 4]);
"contour_plot with named function" $
F(x, y) := x^3 + y^2;
contour_plot (F, [u, -4, 4], [v, -4, 4]);
"contour_plot with gnuplot_preamble" $
contour_plot (F, [u, -4, 4], [v, -4, 4], [gnuplot_preamble, "set size ratio -1"]);
"contour_plot with gnuplot_preamble via set_plot_option" $
set_plot_option ([gnuplot_preamble, "set cntrparam levels 12"])$
contour_plot (F, [u, -4, 4], [v, -4, 4]);
/* Examples adapted from demo/demo.dem
* (others are duplicates or not different enough)
*/
"two dimensional parametric plot" $
plot2d ([parametric, t*sin(t), t*cos(t)], [t, 0, 80], [nticks, 1000]);
"three dimensional cartesian plot of a bessel function" $
plot3d (bessel_j (0, sqrt(x^2 + y^2)), [x, -12, 12], [y, -12, 12]);
"three dimensional polar plot of the same bessel function" $
plot3d (bessel_j (0, r), [th, 0, 2*%pi], [r, 0, 12], ['transform_xy, polar_to_xy]);
"three dimensional plot of x*exp(-x^2-y^2)" $
plot3d (x*exp(- x^2 - y^2), [x, -2, 2], [y, -2, 2]);
/* Example adapted from demo/plots.mac
* (others are duplicates or not different enough)
*/
"Real part of z^1/6" $
plot3d (r^(1/6.0)*cos(th/6), [r, 0, 1], [th, 0, 2*6*%pi], ['grid, 12, 121], ['transform_xy, polar_to_xy]);
/* Examples related to bug reports or other specific topics */
/* SF bug [ 1699445 ] plot2d in very narrow range
* triggers Gnuplot bug on Windows (line outside bounding box)
*/
"[ 1699445 ] plot2d in very narrow range" $
plot2d (sin(x), [x, 1.57079628, 1.570796326794897]);
"[ 2234113 ] plot2d odd roots of X plots only positive values" $
plot2d (x^(1/3), [x, -5, 5]);
plot2d (u^(1/5), [u, -5, 5]);
"r1.55 src/plot.lisp: ensure that log plots are adequately sampled" $
plot2d (x, [x, 1e-5, 100], [logy]);
plot2d (x, [x, 1e-5, 100], [logx]);
"r1.62 src/plot.lisp: expand the cases recognized by COERCE-FLOAT-FUN" $
:lisp (defun $f (x) (+ (cl:sin x) 0.1))
:lisp (defmspec $h (x) (+ (cl:sin (cadr x)) 0.3))
(g(x) := sin(x) + 0.2,
i(x) ::= sin(x) + 0.4,
prefix ("j"),
"j"(x) := sin(x) + 0.5,
matchdeclare (x, floatnump),
tellsimpafter (k(x), sin(x) + 0.6));
plot2d ([f, g, h, i, sin, k], [u, 0, 1]);
/* "j" in list of functions tickles a bug -- quote marks not sanitized
* work around it by explicit legend spec
*/
plot2d (["+", "j"], [u, 0, 1], [legend, "+", "j"]);
"(not a plot example, maybe it should be moved elsewhere)" $
map (lambda ([f], quad_qags (f, u, 0, 1)), [f, g, h, i, "+", "j", sin, k]);
"r1.82 src/plot.lisp: floatify non-float numbers" $
plot2d ([discrete, [1, 2, 3, 4], [1, 1/2, 1/3, 1/4]]);
plot2d ([discrete, [1, 2, 3, 4], [1/%e, 1/%pi, 1/%phi, 1/%gamma]]);
plot2d ([discrete, [1, 2, 3, 4], [1b0, 0.5b0, 0.33b0, 0.25b0]]);
"SF bug [ 2672976 ] wxMaxima 0.8.1: set logscale x gives error";
plot2d (sin(x), [x, 0, 1], [logx, true]);
plot2d (sin(u), [u, 0, 1], [logx, true]);
plot2d (sin(u), [u, 0, 1], [logx, true], [y, 0, 1], [logy, true]);
"verify that nested numerical integral is handled correctly";
plot2d (w^2 * quad_qags (1/(s - w), s, 1, 5) [1], [w, -5, -1], [adapt_depth, 0]);
"another nested numerical integral";
(kill (W, R, A),
W(t) := 95*sqrt(t)*sin(t/6)^2,
R(t) := 275*sin(t/3)^2,
A(t) := 1200 + quad_qags (W(x) - R(x), x, 0, t) [1],
plot2d (A(t), [t, 0, 18], [adapt_depth, 0]));
"plotting realpart and imagpart";
plot3d (realpart (asin (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);
plot3d (imagpart (asin (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);
plot3d (realpart (exp (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);
plot3d (imagpart (exp (x + y*%i)), [x, -2, 2], [y, -2, 2], [grid, 20, 20]);
"messages about non-numeric values and clipped values";
plot2d (sqrt (x), [x, 0, 1]); /* no message */
plot2d (sqrt (x), [x, -1, 1]); /* some non-numeric */
plot2d (sqrt (x), [x, 0, 1], [y, 0, 1/2]); /* some clipped */
plot2d (sqrt (x), [x, -1, 1], [y, 0, 1/2]); /* some non-numeric, some clipped */
plot2d (sqrt (x), [x, -2, -1]); /* all non-numeric */
plot2d (sqrt (x), [x, 0, 1], [y, -2, -1]); /* all clipped */
plot2d (sqrt (x), [x, -1, 1], [y, -2, -1]); /* all non-numeric or clipped */
"coping with overflow in intermediate results";
/* from the mailing list "plot numerical question" 2009-03-11 */
(r4(s) := block ([s : bfloat(s)], s!/(((s/4)!)^4 * 4^s)),
plot2d (r4, [s, 200, 300], [adapt_depth, 0], [nticks, 5]));
plot2d ('r4(s), [s, 200, 300], [adapt_depth, 0], [nticks, 5]);
/* from mailing list 2009-02-18
* "Re: [Maxima] I want to tell maxima (-1)^0.33333333333333=-1, what should i do?"
*/
foo29(x):=(sqrt(-16*x^4-16*x^3+20*x^2+12*x+23)/(6*sqrt(3))+(16*x^3-12*x^2-6*x-25)/54)^(1/3)$
plot2d (foo29 (u), [u, -1, 0]);
plot2d (foo29, [u, -1, 0]);
compile (foo29);
plot2d (foo29, [u, -1, 0]);
/* bug report "Wrong result given by coerce-float-fun" ID: 2880115 */
(kill(f),
f(k) := integrate (exp(%i*k*x)*sin(x)/x, x, minf, inf),
plot2d (f, [x, -3, 3], [adapt_depth, 0], [nticks, 5]));
(translate(f),
plot2d (f, [x, -3, 3], [adapt_depth, 0], [nticks, 5]));
/* bug report "xlabel and ylabel don't change plot3d axis labels" - ID: 3020589 */
(Bxt(x, r) := x^2 + r^2,
[R, L] : [1, 1],
plot3d(Bxt(x,r),[x,0,L],[r,0,R],[xlabel,"x [m]"],[ylabel,"r [m]"],[zlabel,"Bx [T]"],[legend,"Axial field"]));
/* same but now using default axis labels */
plot3d(Bxt(x,r),[x,0,L],[r,0,R],[legend,"Axial field"]);
/* from the mailing list 2011-05-26:
* "Wrong usage" error message when trying to plot with plot3d or contour_plot
* should expect this example to provoke an advisory message and make a plot
*/
block (local (fn, Fn, pw, fbn, fbnxcy, loww),
fn(x):=1/sqrt(2*%pi)*exp((-x^2)/2),
Fn(x):=integrate(fn(t),t,-inf,x),
pw(r1,r2,s1,s2):=1-Fn((r2-r1)/sqrt(s1^2+s2^2)),
fbn(x,y,r):=1/(2*%pi*sqrt(1-r^2))*exp((-(x^2-2*r*x*y+y^2))/(2*(1-r^2))),
fbnxcy(x,y,r) := fbn(x,y,r) / fn(y),
loww(rs2, ro, r, s1, s2) := quad_qagi(fbnxcy(rs1, rs2, r)*pw(rs1, ro, s1, s2), rs1, minf, inf),
plot3d( loww(rs2, 0, r, 1, 1)[1] , [rs2, -1.5, 2.5], [r, 0.1, 0.9] ));
/* simpler version of the preceding one */
block (local (foo),
foo(x, y) := if numberp(x) and numberp(y) then [x^2 - y^2] else funmake (foo, [x, y]),
plot3d (foo (a, b)[1], [a, -1, 1], [b, -1, 1]));
/* helix -- see mailing list 2012-01-22 "3D curve parametric plot" */
plot3d([sin(t), cos(t), t], [t,-5,5], [y,-5,5], [grid,100,2], [gnuplot_pm3d,false])$
"FINIS" $
|