File: test_equations.mac

package info (click to toggle)
maxima 5.27.0-3
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 120,648 kB
  • sloc: lisp: 322,503; fortran: 14,666; perl: 14,343; tcl: 11,031; sh: 4,146; makefile: 2,047; ansic: 471; awk: 24; sed: 10
file content (217 lines) | stat: -rw-r--r-- 10,020 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/Equations/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Equations ---------- */
/* Manipulate an equation using a natural syntax:
   (x = 2)/2 + (1 = 1) => x/2 + 1 = 2 */
(x = 2)/2 + (1 = 1);
/* Solve various nonlinear equations---this cubic polynomial has all real roots
   */
solve(3*x^3 - 18*x^2 + 33*x - 19 = 0, x);
ratsimp(rectform(%));
/* Some simple seeming problems can have messy answers:
   x = {  [sqrt(5) - 1]/4 +/- 5^(1/4) sqrt(sqrt(5) + 1)/[2 sqrt(2)] i,
        - [sqrt(5) + 1]/4 +/- 5^(1/4) sqrt(sqrt(5) - 1)/[2 sqrt(2)] i} */
eqn: x^4 + x^3 + x^2 + x + 1 = 0;
solve(eqn, x);
/* Check one of the answers */
ev(eqn, %[1]);
radcan(%);
remvalue(eqn)$
/* x = {2^(1/3) +- sqrt(3), +- sqrt(3) - 1/2^(2/3) +- i sqrt(3)/2^(2/3)} 
       [Mohamed Omar Rayes] */
solve(x^6 - 9*x^4 - 4*x^3 + 27*x^2 - 36*x - 23 = 0, x);
/* x = {1, e^(+- 2 pi i/7), e^(+- 4 pi i/7), e^(+- 6 pi i/7)} */
solve(x^7 - 1 = 0, x);
/* x = 1 +- sqrt(+-sqrt(+-4 sqrt(3) - 3) - 3)/sqrt(2)   [Richard Liska] */
solve(x^8 - 8*x^7 + 34*x^6 - 92*x^5 + 175*x^4 - 236*x^3 + 226*x^2 - 140*x + 46
      = 0, x);
/* The following equations have an infinite number of solutions (let n be an
   arbitrary integer):
   x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i] */
%e^(2*x) + 2*%e^x + 1 = z;
solve(%, x);
/* x = (1 +- sqrt(9 - 8 n pi i))/2.  Real solutions correspond to n = 0 =>
   x = {-1, 2} */
solve(exp(2 - x^2) = exp(-x), x);
/* x = -W[n](-1) [e.g., -W[0](-1) = 0.31813 - 1.33724 i] where W[n](x) is the
   nth branch of Lambert's W function */
solve(exp(x) = x, x);
/* x = {-1, 1} */
solve(x^x = x, x);
/* This equation is already factored and so *should* be easy to solve:
   x = {-1, 2*{+-arcsinh(1) i + n pi}, 3*{pi/6 + n pi/3}} */
(x + 1) * (sin(x)^2 + 1)^2 * cos(3*x)^3 = 0;
solve(%, x);
multiplicities;
/* x = pi/4 [+ n pi] */
solve(sin(x) = cos(x), x);
solve(tan(x) = 1, x);
/* x = {pi/6, 5 pi/6} [ + n 2 pi, + n 2 pi ] */
solve(sin(x) = 1/2, x);
/* x = {0, 0} [+ n pi, + n 2 pi] */
solve(sin(x) = tan(x), x);
multiplicities;
/* x = {0, 0, 0} */
solve(asin(x) = atan(x), x);
multiplicities;
/* x = sqrt[(sqrt(5) - 1)/2] */
solve(acos(x) = atan(x), x);
/* x = 2 */
solve((x - 2)/x^(1/3) = 0, x);
/* This equation has no solutions */
solve(sqrt(x^2 + 1) = x - 2, x);
/* x = 1 */
solve(x + sqrt(x) = 2, x);
/* x = 1/16 */
solve(2*sqrt(x) + 3*x^(1/4) - 2 = 0, x);
/* x = {sqrt[(sqrt(5) - 1)/2], -i sqrt[(sqrt(5) + 1)/2]} */
solve(x = 1/sqrt(1 + x^2), x);
/* This problem is from a computational biology talk => 1 - log_2[m (m - 1)] */
solve(binomial(m, 2)*2^k = 1, k);
/* x = log(c/a) / log(b/d) for a, b, c, d != 0 and b, d != 1   [Bill Pletsch] */
solve(a*b^x = c*d^x, x);
logcontract(%);
/* x = {1, e^4} */
errcatch(solve(sqrt(log(x)) = log(sqrt(x)), x));
/* Recursive use of inverses, including multiple branches of rational
   fractional powers   [Richard Liska]
   => x = +-(b + sin(1 + cos(1/e^2)))^(3/2) */
assume(sin(cos(1/%e^2) + 1) + b > 0)$
solve(log(acos(asin(x^(2/3) - b) - 1)) + 2 = 0, x);
forget(sin(cos(1/%e^2) + 1) + b > 0)$
/* x = {-0.784966, -0.016291, 0.802557}  From Metha Kamminga-van Hulsen,
   ``Hoisting the Sails and Casting Off with Maple'', _Computer Algebra
   Nederland Nieuwsbrief_, Number 13, December 1994, ISSN 1380-1260, 27--40. */
eqn: 5*x + exp((x - 5)/2) = 8*x^3;
solve(eqn, x);
root_by_bisection(eqn, x, -1,  -0.5);
root_by_bisection(eqn, x, -0.5, 0.5);
root_by_bisection(eqn, x,  0.5, 1);
remvalue(eqn)$
/* x = {-1, 3} */
solve(abs(x - 1) = 2, x);
/* x = {-1, -7} */
solve(abs(2*x + 5) = abs(x - 2), x);
/* x = +-3/2 */
solve(1 - abs(x) = max(-x - 2, x - 2), x);
/* x = {-1, 3} */
solve(max(2 - x^2, x) = max(-x, x^3/9), x);
/* x = {+-3, -3 [1 + sqrt(3) sin t + cos t]} = {+-3, -1.554894}
   where t = (arctan[sqrt(5)/2] - pi)/3.  The third answer is the root of
   x^3 + 9 x^2 - 18 = 0 in the interval (-2, -1). */
solve(max(2 - x^2, x) = x^3/9, x);
/* z = 2 + 3 i */
declare(z, complex)$
eqn: (1 + %i)*z + (2 - %i)*conjugate(z) = -3*%i;
solve(eqn, z);
declare([x, y], real)$
subst(z = x + %i*y, eqn);
ratsimp(ev(%, conjugate));
solve(%, [x, y]);
remove([x, y], real, z, complex)$
remvalue(eqn)$
/* => {f^(-1)(1), f^(-1)(-2)} assuming f is invertible */
solve(f(x)^2 + f(x) - 2 = 0, x);
remvalue(eqns, vars)$
/* Solve a 3 x 3 system of linear equations */
eqn1:   x +   y +   z =  6;
eqn2: 2*x +   y + 2*z = 10;
eqn3:   x + 3*y +   z = 10;
/* Note that the solution is parametric: x = 4 - z, y = 2 */
solve([eqn1, eqn2, eqn3], [x, y, z]);
/* A linear system arising from the computation of a truncated power series
   solution to a differential equation.  There are 189 equations to be solved
   for 49 unknowns.  42 of the equations are repeats of other equations; many
   others are trivial.  Solving this system directly by Gaussian elimination
   is *not* a good idea.  Solving the easy equations first is probably a better
   method.  The solution is actually rather simple.   [Stanly Steinberg]
   => k1 = ... = k22 = k24 = k25 = k27 = ... = k30 = k32 = k33 = k35 = ...
      = k38 = k40 = k41 = k44 = ... = k49 = 0, k23 = k31 = k39,
      k34 = b/a k26, k42 = c/a k26, {k23, k26, k43} are arbitrary */
eqns: [
 -b*k8/a+c*k8/a = 0, -b*k11/a+c*k11/a = 0, -b*k10/a+c*k10/a+k2 = 0,
 -k3-b*k9/a+c*k9/a = 0, -b*k14/a+c*k14/a = 0, -b*k15/a+c*k15/a = 0,
 -b*k18/a+c*k18/a-k2 = 0, -b*k17/a+c*k17/a = 0, -b*k16/a+c*k16/a+k4 = 0,
 -b*k13/a+c*k13/a-b*k21/a+c*k21/a+b*k5/a-c*k5/a = 0, b*k44/a-c*k44/a = 0,
 -b*k45/a+c*k45/a = 0, -b*k20/a+c*k20/a = 0, -b*k44/a+c*k44/a = 0,
  b*k46/a-c*k46/a = 0, b^2*k47/a^2-2*b*c*k47/a^2+c^2*k47/a^2 = 0, k3 = 0,
 -k4 = 0, -b*k12/a+c*k12/a-a*k6/b+c*k6/b = 0,
 -b*k19/a+c*k19/a+a*k7/c-b*k7/c = 0, b*k45/a-c*k45/a = 0,
 -b*k46/a+c*k46/a = 0, -k48+c*k48/a+c*k48/b-c^2*k48/(a*b) = 0,
 -k49+b*k49/a+b*k49/c-b^2*k49/(a*c) = 0, a*k1/b-c*k1/b = 0,
  a*k4/b-c*k4/b = 0, a*k3/b-c*k3/b+k9 = 0, -k10+a*k2/b-c*k2/b = 0,
  a*k7/b-c*k7/b = 0, -k9 = 0, k11 = 0, b*k12/a-c*k12/a+a*k6/b-c*k6/b = 0,
  a*k15/b-c*k15/b = 0, k10+a*k18/b-c*k18/b = 0, -k11+a*k17/b-c*k17/b = 0,
  a*k16/b-c*k16/b = 0, -a*k13/b+c*k13/b+a*k21/b-c*k21/b+a*k5/b-c*k5/b = 0,
 -a*k44/b+c*k44/b = 0, a*k45/b-c*k45/b = 0,
  a*k14/c-b*k14/c+a*k20/b-c*k20/b = 0, a*k44/b-c*k44/b = 0,
 -a*k46/b+c*k46/b = 0, -k47+c*k47/a+c*k47/b-c^2*k47/(a*b) = 0,
  a*k19/b-c*k19/b = 0, -a*k45/b+c*k45/b = 0, a*k46/b-c*k46/b = 0,
  a^2*k48/b^2-2*a*c*k48/b^2+c^2*k48/b^2 = 0,
 -k49+a*k49/b+a*k49/c-a^2*k49/(b*c) = 0, k16 = 0, -k17 = 0,
 -a*k1/c+b*k1/c = 0, -k16-a*k4/c+b*k4/c = 0, -a*k3/c+b*k3/c = 0,
  k18-a*k2/c+b*k2/c = 0, b*k19/a-c*k19/a-a*k7/c+b*k7/c = 0,
 -a*k6/c+b*k6/c = 0, -a*k8/c+b*k8/c = 0, -a*k11/c+b*k11/c+k17 = 0,
 -a*k10/c+b*k10/c-k18 = 0, -a*k9/c+b*k9/c = 0,
 -a*k14/c+b*k14/c-a*k20/b+c*k20/b = 0,
 -a*k13/c+b*k13/c+a*k21/c-b*k21/c-a*k5/c+b*k5/c = 0, a*k44/c-b*k44/c = 0,
 -a*k45/c+b*k45/c = 0, -a*k44/c+b*k44/c = 0, a*k46/c-b*k46/c = 0,
 -k47+b*k47/a+b*k47/c-b^2*k47/(a*c) = 0, -a*k12/c+b*k12/c = 0,
  a*k45/c-b*k45/c = 0, -a*k46/c+b*k46/c = 0,
 -k48+a*k48/b+a*k48/c-a^2*k48/(b*c) = 0,
  a^2*k49/c^2-2*a*b*k49/c^2+b^2*k49/c^2 = 0, k8 = 0, k11 = 0, -k15 = 0,
  k10-k18 = 0, -k17 = 0, k9 = 0, -k16 = 0, -k29 = 0, k14-k32 = 0,
 -k21+k23-k31 = 0, -k24-k30 = 0, -k35 = 0, k44 = 0, -k45 = 0, k36 = 0,
  k13-k23+k39 = 0, -k20+k38 = 0, k25+k37 = 0, b*k26/a-c*k26/a-k34+k42 = 0,
 -2*k44 = 0, k45 = 0, k46 = 0, b*k47/a-c*k47/a = 0, k41 = 0, k44 = 0,
 -k46 = 0, -b*k47/a+c*k47/a = 0, k12+k24 = 0, -k19-k25 = 0,
 -a*k27/b+c*k27/b-k33 = 0, k45 = 0, -k46 = 0, -a*k48/b+c*k48/b = 0,
  a*k28/c-b*k28/c+k40 = 0, -k45 = 0, k46 = 0, a*k48/b-c*k48/b = 0,
  a*k49/c-b*k49/c = 0, -a*k49/c+b*k49/c = 0, -k1 = 0, -k4 = 0, -k3 = 0,
  k15 = 0, k18-k2 = 0, k17 = 0, k16 = 0, k22 = 0, k25-k7 = 0,
  k24+k30 = 0, k21+k23-k31 = 0, k28 = 0, -k44 = 0, k45 = 0, -k30-k6 = 0,
  k20+k32 = 0, k27+b*k33/a-c*k33/a = 0, k44 = 0, -k46 = 0,
 -b*k47/a+c*k47/a = 0, -k36 = 0, k31-k39-k5 = 0, -k32-k38 = 0,
  k19-k37 = 0, k26-a*k34/b+c*k34/b-k42 = 0, k44 = 0, -2*k45 = 0, k46 = 0,
  a*k48/b-c*k48/b = 0, a*k35/c-b*k35/c-k41 = 0, -k44 = 0, k46 = 0,
  b*k47/a-c*k47/a = 0, -a*k49/c+b*k49/c = 0, -k40 = 0, k45 = 0, -k46 = 0,
 -a*k48/b+c*k48/b = 0, a*k49/c-b*k49/c = 0, k1 = 0, k4 = 0, k3 = 0,
 -k8 = 0, -k11 = 0, -k10+k2 = 0, -k9 = 0, k37+k7 = 0, -k14-k38 = 0,
 -k22 = 0, -k25-k37 = 0, -k24+k6 = 0, -k13-k23+k39 = 0,
 -k28+b*k40/a-c*k40/a = 0, k44 = 0, -k45 = 0, -k27 = 0, -k44 = 0,
  k46 = 0, b*k47/a-c*k47/a = 0, k29 = 0, k32+k38 = 0, k31-k39+k5 = 0,
 -k12+k30 = 0, k35-a*k41/b+c*k41/b = 0, -k44 = 0, k45 = 0,
 -k26+k34+a*k42/c-b*k42/c = 0, k44 = 0, k45 = 0, -2*k46 = 0,
 -b*k47/a+c*k47/a = 0, -a*k48/b+c*k48/b = 0, a*k49/c-b*k49/c = 0, k33 = 0,
 -k45 = 0, k46 = 0, a*k48/b-c*k48/b = 0, -a*k49/c+b*k49/c = 0
 ]$
vars: [k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16,
       k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30,
       k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44,
       k45, k46, k47, k48, k49]$
solve(eqns, vars);
/* Solve a 3 x 3 system of nonlinear equations */
eqn1: x^2*y + 3*y*z - 4 = 0;
eqn2: -3*x^2*z + 2*y^2 + 1 = 0;
eqn3: 2*y*z^2 - z^2 - 1 = 0;
/* Solving this by hand would be a nightmare */
solve([eqn1, eqn2, eqn3], [x, y, z]);
rectform(sfloat(%[1..5]));
remvalue(eqn1, eqn2, eqn3)$
/* ---------- Quit ---------- */
quit();