File: test_tensor_analysis.mac

package info (click to toggle)
maxima 5.27.0-3
  • links: PTS
  • area: main
  • in suites: wheezy
  • size: 120,648 kB
  • sloc: lisp: 322,503; fortran: 14,666; perl: 14,343; tcl: 11,031; sh: 4,146; makefile: 2,047; ansic: 471; awk: 24; sed: 10
file content (63 lines) | stat: -rw-r--r-- 2,744 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/* Original version of this file copyright 1999 by Michael Wester,
 * and retrieved from http://www.math.unm.edu/~wester/demos/TensorAnalysis/problems.macsyma
 * circa 2006-10-23.
 *
 * Released under the terms of the GNU General Public License, version 2,
 * per message dated 2007-06-03 from Michael Wester to Robert Dodier
 * (contained in the file wester-gpl-permission-message.txt).
 *
 * See: "A Critique of the Mathematical Abilities of CA Systems"
 * by Michael Wester, pp 25--60 in
 * "Computer Algebra Systems: A Practical Guide", edited by Michael J. Wester
 * and published by John Wiley and Sons, Chichester, United Kingdom, 1999.
 */
/* ----------[ M a c s y m a ]---------- */
/* ---------- Initialization ---------- */
showtime: all$
prederror: false$
/* ---------- Tensor Analysis ---------- */
init_itensor()$
/* Generalized Kronecker delta: delta([j, h], [i, k]) =
   delta(j, i) delta(h, k) - delta(j, k) delta(h, i).  See David Lovelock and
   Hanno Rund, _Tensors, Differential Forms, & Variational Principles_,  John
   Wiley & Sons, Inc., 1975, p. 109. */
ishow(kdelta([i, k, @j, @h]));
/* Levi-Civita symbol: [epsilon(2,1,3), epsilon(1,3,1)] => [-1, 0] */
[levi_civita([2, 1, 3]), levi_civita([1, 3, 1])];
/* Tensor outer product:                   [[  5  6] [-10 -12]]
                         [1 -2]   [ 5 6]   [[ -7  8] [ 14 -16]]
    ij      ij           [3  4] X [-7 8] = [                  ]
   c     = a   b                           [[ 15 18] [ 20  24]]
      kl        kl                         [[-21 24] [-28  32]] */
a: matrix([1, -2], [3, 4])$
b: matrix([5, 6], [-7, 8])$
outermap("*", a, b);
remvalue(a, b)$
/* Definition of the Christoffel symbol of the first kind (a is the metric
   tensor) [Lovelock and Rund, p. 81]
                d a     d a     d a
             1     kh      hl      lk
   Chr1    = - (----- + ----- - -----)
       lhk   2      l       k       h
                 d x     d x     d x  */
imetric: a$
ishow(ichr1([l, h, k]));
/* Partial covariant derivative of a type (1, 1) tensor field (Chr2 is the
   Christoffel symbol of the second kind) [Lovelock and Rund, p. 77]
    i      d    i        i   m        m   i
   T    = ---- T  + Chr2    T  - Chr2    T
    j|k      k  j       m k  j       j k  m
          d x     */
ishow(T([@i, j]));
ishow(covdiff(%, k));
/* Verify the Bianchi identity for a symmetric connection (K is the Riemann
   curvature tensor) [Lovelock and Rund, p. 94]
     h         h          h
   K       + K        + K       = 0
    i jk|l    i kl|j     i lj|k     */
ishow(covdiff(icurvature([@h, i, j, k]), l) +
      covdiff(icurvature([@h, i, k, l]), j) +
      covdiff(icurvature([@h, i, l, j]), k));
canform(%);
/* ---------- Quit ---------- */
quit();