1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/*
diag.mac
Contains the functions:
(1) diag
(2) JF
(3) jordan
(4) minimalPoly
(5) dispJordan
(6) ModeMatrix
(7) mat_function
plus some internal utility funcions. If you make use of one of
them, consider asking on the mailing list: we can try to make a
more useful API and give it a sensible name (not prefixed by
"diag_"), that we won't change.
See the manual or the comments above the relevant function for more
information on how each works.
As with the rest of Maxima, this code is distributed under the GPL,
version 2+
*/
load("eigen")$
/*
If EXPR is a matrix then return it unchanged. Otherwise, return a
1x1 matrix whose sole element is EXPR.
*/
diag_matrixify (expr) :=
if matrixp (expr) then expr else matrix ([expr])$
/*
Pad R with zeros before and after to make it WIDTH wide using INDENT
zeros on the left hand side.
*/
diag_zeropad_row (r, indent, width) :=
block([right: width - (left + length(r))],
if is(right < 0) then
error(r, "does not fit in a row of length", width,
"with indent", indent),
append (makelist (0, indent), r, makelist (0, right)))$
/*
Return the direct sum of the elements of LST, made into 1x1 matrices
if they weren't already matrices.
*/
diag (lst) :=
block ([lst: map (diag_matrixify, lst),
width, height, left: 0, rows: []],
width: lsum (length (first (A)), A, lst),
height: lsum (length (A), A, lst),
for A in lst do (
for r in args(A) do
rows: cons (diag_zeropad_row (r, left, width), rows),
left: left + length (first (A))),
apply (matrix, reverse (rows)))$
/*
Construct a Jordan block of size N x N and eigenvalue EIVAL.
*/
JF (eival, n) :=
if not (numberp (n)) then
'JF (eival, n)
elseif not (integerp (n)) then
error (n, "is not an integer, so not a valid Jordan block size")
elseif is (n <= 0) then
error ("Cannot construct matrix with negative size", n)
else
genmatrix (
lambda ([i,j],
if is (i = j) then eival
elseif is (j = i + 1) then 1
else 0),
n, n)$
/*
Calculate the correct partition of multiplicity for the matrix A at
the eigenvalue eival.
*/
diag_calculate_mult_partition (A, multiplicity, eival) :=
if is (multiplicity = 1) then [1] else
block ([Abar: A - eival * ident (length (A)),
n: length (A),
nullity],
nullity: n - rank (Abar),
if is (nullity = 1) then [multiplicity]
elseif is (nullity = multiplicity) then makelist (1, nullity)
else block ([blocks_left: nullity, mults: [], Abarpow: Abar, dnull],
for k: 1 do (
Abarpow: Abarpow . Abar,
dnull: n - rank (Abarpow) - nullity,
nullity: nullity + dnull,
if (dnull < blocks_left) then (
mults: append (makelist (k, blocks_left - dnull), mults),
multiplicity: multiplicity - k * (blocks_left - dnull),
blocks_left: dnull),
if is (blocks_left * (k + 1) = multiplicity) then
return (append (makelist (k+1, blocks_left), mults)),
if is (blocks_left * (k + 1) > multiplicity) then
error ("Unexpected blocks left over!"))))$
/*
Calculate the JCF of A. Returns a list of eigenvalues and their
multiplicities.
*/
jordan (A) :=
if not (matrixp (A)) then
'jordan(A)
else block([eigenlist: eigenvectors (A)],
map (lambda ([eival, mult],
cons (eival, diag_calculate_mult_partition (A, mult, eival))),
eigenlist[1][1], eigenlist[1][2]))$
/*
A simple sanity check that arguments are of the form returned by
jordan().
*/
diag_jordan_info_check (lst) :=
if not (listp (lst)) then false
else block([ret: true],
for pair in lst do
if not (listp (pair)) then (ret: false, return (false))
elseif is (length (pair) < 2) then
error ("Found a surprisingly short jordan_info list:",
pair),
ret)$
/*
Calculate the minimal polynomial, expressed in the symbol "x", of
any matrix with the given list of eigenvalues and their
multiplicities.
NOTE: This assumes that the first multiplicity for an eigenvalue is
the largest and that the given eigenvalues are distinct. This
is the case for the output of jordan().
*/
minimalPoly (jordan_info) :=
if not (diag_jordan_info_check (jordan_info)) then
'minimalPoly (jordan_info)
else
lreduce ("*",
map (lambda ([eival_lst], ('x - first (eival_lst))^(second (eival_lst))),
jordan_info))$
/*
Take a list of eigenvalues and their multiplicities and build the
corresponding Jordan matrix.
*/
dispJordan (jordan_info) := block ([blocks: []],
if not (diag_jordan_info_check (jordan_info)) then
'dispJordan (jordan_info)
else
for eival_lst in jordan_info do
for size in rest (eival_lst) do
blocks: cons (JF (first (eival_lst), size), blocks),
diag (reverse (blocks)))$
/*
Takes a "sorted list" and produces a histogram of elements and their
frequencies:
[3,3,2,2,2,1,1,1] => [[3,2],[2,3],[1,3]]
The "sorted" requirement is merely that any object only occurs in
one block. Thus, we will do the right thing on [1,1,0,0,2,2], but
not on [1,1,0,0,1,1].
*/
diag_sorted_list_histogram (list) :=
if is (emptyp (list)) then [] else
block([pairs: [], current: first (list), count: 1],
for lst: rest (list) next rest (lst) while not (emptyp (lst))
do
if is (current = first (lst)) then
count: count + 1
else (
pairs: cons ([current, count], pairs),
current: first (lst),
count: 1),
reverse (cons ([current, count], pairs)))$
/*
Find a formula for a general element of the kernel of A.
Returns the solution as a row vector of (linear) expressions in the
variables of %rnum_list.
*/
diag_kernel_element (A) :=
block ([vars: makelist (gensym (), length (first (A))), eqns, soln],
if length (vars) = 1 then
eqns: [first(vars) * first (first (A))]
else
eqns: map (first, args (A . apply (matrix, map("[", vars)))),
soln: algsys (eqns, vars),
if emptyp (soln) then error ("Could not solve for the kernel of ", A),
map (rhs, first (soln)))$
/*
Calculate the general form for a chain of generalized eigenvectors
for A, of the form [v1, v2, ..., vn] such that (A-eival*I).v1 = 0 and
(A-eival*I).vk = v(k-1) where n = degree.
If degree is not correct, throws an error.
Otherwise returns [chain, freevars] where chain is a list of the
eigenvectors, each of which is represented as a list, and freevars
is the list of free variables.
*/
diag_general_jordan_chain (A, eival, degree) :=
block ([n: length (A), Abar, ret],
if (is (n < 1) or not (length (A[1]) = n)) then
error ("Invalid input matrix: ", A),
Abar: A - eival * ident (n),
ret: [diag_kernel_element (Abar^^degree)],
for i : 2 thru degree do
ret: cons (args (map (first, Abar . first(ret))), ret),
[ret, %rnum_list])$
/*
LI_ROWS should be a list of lists representing row vectors that are
linearly independent. Then CHAIN_EXPR is a list of row vectors in
VARIABLES representing a Jordan chain. The function tries to find a
choice of variables such that CHAIN_EXPR is linearly independent of
LI_ROWS.
(Note: Because chain_expr represents a Jordan chain, it suffices to
check linear independence for the first and last elements of
CHAIN_EXPR)
*/
diag_find_li_chain (li_rows, chain_expr, variables) :=
block ([dict: false, extra_rows],
for vals in ident (length (variables)) do (
dict: map ("=", variables, vals),
extra_rows: subst (dict,
if is (length (chain_expr) > 1) then
[first (chain_expr), last (chain_expr)]
else [first (chain_expr)]),
if is (rank (apply (matrix, append (li_rows, extra_rows))) =
length (li_rows) + length (extra_rows))
then return (true)
else dict: false),
if is (dict = false) then
error ("Could not find a linearly independent vector"),
/* Rectform since complex eigenvalues result in horrible
expressions here otherwise */
rectform (subst (dict, chain_expr)))$
/*
Calculates the mode matrix of A, which is a matrix T such that
T^^(-1) . A . T = JordanForm (A)
F should be a list of the eigenvalues of A together with their
multiplicities, as returned by jordan(A).
Notes on algorithm:
rest(ev_lst) is a list of chain lengths, which we convert to
multiplicities. To ensure we get the correct answer, when we hunt
for chains we need to start with those of maximal
length. Fortunately, jordan() returns lists where rest(ev_lst) is
(weakly) decreasing. As such, we can just work down the lengths in
the given order and we'll get the right answer.
For each chain length, we find a general form for a Jordan chain
that length then we evaluate the formula, varying the parameters to
make sure we end up with a linearly independent chain. Note that it
suffices to check that the first term of the chain list (the actual
eigenvector) is linearly independent from the rows we've got so
far.
Since generalised eigenvectors for different eigenvalues are
linearly independent, we don't bother checking there.
*/
diag_mode_matrix (a, F) :=
if not (diag_jordan_info_check (F)) or not (matrixp (a)) then
'ModeMatrix (a, F)
else block([msize: length(a), all_rows: []],
for ev_pair in F do
block ([eival: first (ev_pair),
multiplist: diag_sorted_list_histogram (rest (ev_pair)),
mat_rows: [], mat_rank: 0],
for degree_pair in multiplist do
block ([mindeg: first (degree_pair),
genev_pair, genevs, free_vars],
genev_pair: diag_general_jordan_chain (a, eival,
first (degree_pair)),
for k : 1 thru second (degree_pair) do
mat_rows:
append (mat_rows,
diag_find_li_chain (mat_rows,
first (genev_pair),
second (genev_pair)))),
all_rows: append (all_rows, mat_rows)),
transpose (apply (matrix, all_rows)))$
/*
Finds a matrix T such that T^^(-1) . A . T is the Jordan form of A.
*/
ModeMatrix (A, [jordan_info]) :=
if is (length (jordan_info) > 1) then
error ("Too many arguments for ModeMatrix. (Expects 1 or 2)")
elseif not (matrixp (A)) then
if is (length (jordan_info) = 1) then
'ModeMatrix (A, first (jordan_info))
else
'ModeMatrix (A)
else
diag_mode_matrix (A,
if is (length (jordan_info) = 1)
then first (jordan_info) else jordan (A))$
/*
Return a list of taylor coefficients for the function f expanded
around some arbitrary point VAR where f(var) = EXPR. The first
element of the list is f(var) and the last is
diff(f(var),var,maxpow).
*/
diag_taylor_coefficients (expr, var, maxpow) :=
block ([coeffs: [expr]],
for k:1 thru maxpow do
(expr: diff (expr, var), coeffs: cons (expr/k!, coeffs)),
reverse (coeffs))$
/*
Build a matrix of the form:
[ f(0) f'(0) f''(0) ]
[ 0 f(0) f'(0) ]
[ 0 0 f(0) ]
except with coefficients taken from the COEFFS list, substituting
EIGENVALUE for VAR, where SIZE is the size of the matrix. This is
the result of Taylor expanding a f(A), where A is a Jordan block,
around its eigenvalue.
*/
diag_taylor_expand_block (coeffs, var, eigenvalue, size) := (
coeffs: makelist (subst (eigenvalue, var, coeffs[i]), i, 1, size),
apply (matrix,
makelist (makelist (if is (i<k) then 0 else coeffs[i-k+1], i, 1, size),
k, 1, size)))$
/*
Calculate the value of an analytic function on the matrix
represented by the Jordan list JORDAN. The function is given by EXPR
in VAR.
*/
diag_mat_function_jordan (jordan, expr, var) :=
block ([coeffs, blocks: [],
max_degree: lmax (map (second, jordan)) - 1],
/*
Expand f(var) about some arbitrary point as a Taylor series. The
Jordan matrix is diagonal plus a nilpotent matrix order one less
than the largest block. We need coefficients the same order as
that maximum block.
*/
coeffs: diag_taylor_coefficients (expr, var, max_degree),
/*
We calculate the value of EXPR on each Jordan block using
DIAG_TAYLOR_EXPAND_BLOCK. The degrees in JORDAN_LST are known to
be decreasing, so we can be slightly clever about not computing
things repeatedly.
*/
for jordan_lst in jordan do
block ([cached_block:
diag_taylor_expand_block (coeffs, var,
first (jordan_lst),
second (jordan_lst)),
cached_size: second(jordan_lst)],
for size in rest (jordan_lst) do
(if is (size # cached_size) then
(cached_size: size,
cached_block:
apply (matrix,
makelist (
makelist (cached_block[i,j], j, 1, size),
i, 1, size))),
blocks: cons (cached_block, blocks))),
diag (reverse (blocks)))$
/*
Take an analytic function, f, and a matrix, A, and calculate f(A) by
means of the associated Taylor series.
*/
mat_function (f, A) :=
if not (matrixp (A)) then
'mat_function (f, A)
else
block ([jj: jordan (A), var: gensym(), modemat],
modemat: ModeMatrix (A, jj),
modemat . diag_mat_function_jordan (jj, apply (f, [var]), var)
. (modemat)^^(-1))$
|