1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
|
/* ---------------------------------------------------------------- */
/* SARAG - Root Counting */
/* by Fabrizio Caruso modified by Alexandre Le meur and Marie-Françoise Roy */
/* Verbosity levels */
NONVERBOSE : 0;
SUMMARY : 1;
NORMAL : 2;
VERY : 3;
EXTRA : 4;
padWithZeros(seq,size) :=
append(seq,makelist(0,i,1,size-length(seq)));
/* signed pseudo-remainder of p divised by q*/
sPsRem(p,q,var):=
if degree(p,var)<degree(q,var) then p
else (if remainder(degree(p,var)-degree(q,var),2)=1 then
remainder(leadCoeff(q,var)**(degree(p,var)-degree(q,var)+1)*p,q,var)
else remainder(leadCoeff(q,var)**(degree(p,var)-degree(q,var)+2)*p,q,var)
) /* end else */
;
/* Signed Remainder Sequence */
sRem(a,b,var) :=
block([aa,bb,rOld,rNew,quo,res,seq,srsRes],
aa : expandIf(a),
bb : expandIf(b),
rOld : aa,
rNew : bb,
srsRes : [aa],
while not(rNew = 0) do
(
srsRes : endcons(rNew,srsRes),
res : remainder(rOld,rNew,var),
rOld : rNew,
rNew : -res
), /* end while */
return(srsRes)
); /* end proc */
/* Extended Signed Remainder Sequence */
sRemExt(a,b,var) :=
block([rOld,rNew,uOld,uNew,vOld,vNew,rRes, uRes, vRes,quo,rList,uList,vList,rAux,uAux,vAux],
a : expandIf(a),
b : expandIf(b),
rOld : a,
rNew : b,
uOld : 1, vOld : 0,
uNew : 0, vNew : 1,
rList : [a],
uList : [uOld],
vList : [vOld],
while not(rNew = 0 ) do
(
rList : endcons(rNew,rList),
uList : endcons(uNew,uList),
vList : endcons(vNew,vList),
rRes : divide(rOld,rNew,var),
quo : first(rRes),
rAux : rNew,
uAux : uNew,
vAux : vNew,
uNew : ratexpand(-uOld + quo*uNew),
vNew : ratexpand(-vOld + quo*vNew),
rOld : rAux,
uOld : uAux,
vOld : vAux,
rNew : -second(rRes)
),/* end while */
return([rList,endcons(uNew,uList),endcons(vNew,vList)])
);/* end proc */
/* It counts the sign change of a determinant after */
/* i consecutive row changes */
revRowsCount(i) := (-1)^(i*(i-1)/2);
/* ------------------------------------------------------- */
/* Part concerning the computation of signed subresultants */
sSubResPol(p,q,var) :=
block([pp,qq,degA,degB,i,j,k,h,lcA,lcB,delta,
SR,s,sOld,res],
pp : expandIf(p),
qq : expandIf(q),
degA : degree(pp,var),
degB : degree(qq,var),
if degA<=degB then
(
print("sSubRes) Error: inconsistent degrees"),
return(false)
), /* end if */
SR : make_array('any,degA+1),
s : make_array('any,degA+1),
sOld : make_array('any,degA+1),
lcA : leadCoeff(pp,var),
lcB : leadCoeff(qq,var),
SR[degA] : pp,
s[degA] : 1,
sOld[degA] : 1,
SR[degA-1] : qq,
sOld[degA-1] : lcB,
i : degA + 1,
j : degA,
while j>=1 and not(SR[j-1]=0) do
(
k : degree(SR[j-1],var),
if k = j-1 then
(
s[j-1] : sOld[j-1],
if k>=1 then
SR[k-1] : NORM_ALGORITHM(-remainder(s[j-1]^2*SR[i-1],SR[j-1],var)/
(s[j]*sOld[i-1]))
), /* end if */
if k < j-1 then
(
/* Computation of s[k] */
for delta : 1 thru min(j-k-1,j-1) do
sOld[j-delta-1] : (-1)^delta * (sOld[j-1]*sOld[j-delta])/s[j],
s[k] : sOld[k],
s[j-1] : 0,
SR[k] : NORM_ALGORITHM(s[k]*SR[j-1]/sOld[j-1]),
for h : k+1 thru j-2 do
(
SR[h] : 0,
s[h] : 0
), /* end for */
/* Computation of SR[k-1] */
/* ratexpand or expand */
if k>= 1 then
SR[k-1] : NORM_ALGORITHM(-remainder(sOld[j-1]*s[k]*SR[i-1],
SR[j-1],var)/
(s[j]*sOld[i-1]))
), /* end if */
if k>= 1 then
sOld[k-1] : leadCoeff(SR[k-1],var),
i : j,
j : k
), /*end while */
res : padWithZeros(makelist(SR[degA-i],i,0,degA-j),degA+1),
return(res)
); /* end proc */
sSubResCoeff(p,q,var) :=
block([s,pp,qq],
pp:expand(p),
qq:expand(q),
s : sSubResPol(pp,qq,var),
return(
makelist(coeff(s[j],var,degree(pp,var)+1-j),j,1,degree(pp,var)+1)
)
);
/* Extended Signed Subresultant Sequence */
/* Algorithm 8.75 */
/* (A variation of this algorithm is used in */
/* Algorithm 9.47 and Algorithm 10.17 */
/* Extended Signed Subresultant Sequence*/
sSubResExt(a,b,var) :=
sSubResExtVerbose(a,b,var,DEFAULT_VERBOSITY);
sSubResExtVerbose(a,b,var,verbosity) :=
block([q,degA,degB,i,j,k,lcA,lcB,delta,
SR:make_array('any),s:make_array('any),sOld:make_array('any),
u:make_array('any),v:make_array('any)],
a : expandIf(a),
b : expandIf(b),
degA : degree(a,var),
degB : degree(b,var),
if degA<=degB then
(
print("sSubResExt) Error: inconsistent degrees"),
return(false)
),
SR : make_array('any,degA+1),
s : make_array('any,degA+1),
sOld : make_array('any,degA+1),
u : make_array('any,degA+2),
v : make_array('any,degA+2),
lcA : leadCoeff(a,var),
lcB : leadCoeff(b,var),
SR[degA] : a,
s[degA] : 1,
sOld[degA] : s[degA],
SR[degA-1] : b,
sOld[degA-1] : lcB,
u[degA+1] : 1,
v[degA+1] : 0,
u[degA-1+1] : 0,
v[degA-1+1] : 1,
i : degA + 1,
j : degA,
while j>=1 and not(SR[j-1]=0) do
(
k : degree(SR[j-1],var),
if verbosity>=EXTRA then
(
print("sSubResExt) j : ", j),
print("sSubResExt) k : ", k)
),
if k = j-1 then
(
s[j-1] : sOld[j-1],
q : quotient(s[j-1]^2 * SR[i-1], SR[j-1],var),
if verbosity >= VERY then
print("sSubResExt) q : ", q),
if k>=1 then
SR[k-1] : NORM_ALGORITHM((-s[j-1]^2 *
SR[i-1] + q * SR[j-1])/(s[j]*sOld[i-1])),
u[k-1+1] : NORM_ALGORITHM((-s[j-1]^2 *
u[i-1+1] + q * u[j-1+1])/(s[j]*sOld[i-1])),
v[k-1+1] : NORM_ALGORITHM((-s[j-1]^2 *
v[i-1+1] + q * v[j-1+1])/(s[j]*sOld[i-1]))
),
if k<j-1 then
(
s[j-1] : 0,
/* Computation of s[k] */
for delta : 1 thru min(j-k-1,j-1) do
sOld[j-delta-1] : (-1)^delta * (sOld[j-1]*sOld[j-delta])/s[j],
if k>=0 then
(
s[k] : sOld[k],
SR[k] : NORM_ALGORITHM(s[k]*SR[j-1]/sOld[j-1])
),
u[k+1] : NORM_ALGORITHM(s[k]*u[j-1+1]/sOld[j-1]),
v[k+1] : NORM_ALGORITHM(s[k]*v[j-1+1]/sOld[j-1]),
for h : k+1 thru j-2 do
(
SR[h] : 0,
u[h+1] : 0,
v[h+1] : 0,
s[h] : 0
),
/* Computation of SR[k-1], u[k-1], v[k-1] */
q : quotient(s[k]*sOld[j-1]*SR[i-1],SR[j-1],var),
if k>=1 then
SR[k-1] : NORM_ALGORITHM((-sOld[j-1] * s[k] * SR[i-1] +
q * SR[j-1])/(s[j]*sOld[i-1])),
u[k-1+1] : NORM_ALGORITHM((-sOld[j-1] * s[k] * u[i-1+1] +
q * u[j-1+1])/(s[j]*sOld[i-1])),
v[k-1+1] : NORM_ALGORITHM((-sOld[j-1] * s[k] * v[i-1+1] +
q * v[j-1+1])/(s[j]*sOld[i-1]))
),
if k>=1 then
sOld[k-1] : leadCoeff(SR[k-1],var),
i : j,
j : k,
if verbosity>= NORMAL and k>= 1 then
print("sSubResExt) SR[", k-1,"] : ", SR[k-1])
),
for h : 0 thru j-2 do
(
SR[h] : 0,
s[h] : 0,
u[h+1] : 0,
v[h+1] : 0
),
s[degA]:lcA,
return(
[padWithZeros(makelist(SR[degA-i],i,0,degA-j),degA+1),
makelist(u[degA-i+1],i,0,degA-j+1),
makelist(v[degA-i+1],i,0,degA-j+1)])
);
/* last non zero element of a sequence */
lastNonZero(seq) :=
block([i],
for i:1 thru length(seq) do
if not(seq[length(seq)-i+1] = 0) then
return(seq[length(seq)-i+1])
); /* end proc */
/* index of last non zero element of a sequence */
lastNonZeroIndex(seq) :=
block([i],
for i:1 thru length(seq) do
if not(seq[length(seq)-i+1] = 0) then
return(length(seq)-i+1)
); /* end proc */
/* index of first non zero element of a sequence */
firstNonZeroIndex(seq) :=
block([i],
for i:1 thru length(seq) do
if not(seq[i] = 0) then
return(i)
); /* end proc */
/* Gcd and Gcd-Free part computation */
/* It outputs : */
/* gcd(p,q) and p/gcd(p,q) */
gcdFreePart(p,q,var) :=
block([r],
r:sSubResExt(ratexpand(p),sPsRem(ratexpand(q),ratexpand(p),var),var),
return ([lastNonZero(r[1]),lastNonZero(r[3])])
); /* end proc */
gcdFreePartWithZ(p,q,var) :=
block([r,u,v,c],
r:sSubResExt(p,sPsRem(ratexpand(q),ratexpand(p),var),var),
c:leadCoeff(expand(p),var),
v:lastNonZero(r[3]),
return ([ratexpand(c*lastNonZero(r[1])/leadCoeff(lastNonZero(r[1]),var)),ratexpand(c*v/leadCoeff(v,var))])
); /* end proc */
sSubResCoeffLast(p,q,var) :=
last(sSubResCoeff(p,q,var));
sylvesterResultant(p,q,var) :=
block([aux,pp ,qq],
pp : expandIf(p),
qq : expandIf(q),
if degree(pp,var)>degree(qq,var) then
return(epsilon(degree(pp,var))*sSubResCoeffLast(pp,qq,var))
else
if degree(pp,var)<degree(qq,var) then
return((-1)^(degree(pp,var)*degree(pp,var))*sylvesterResultant(qq,pp,var))
else
(
aux : expand(leadCoeff(pp,var)*qq-leadCoeff(qq,var)*pp),
return(expand(epsilon(degree(pp,var))*sSubResCoeffLast(pp,aux,var)/leadCoeff(pp,var)^degree(aux,var)))
) /* end else */
); /* end proc */
resultant(p,q,var) :=sylvesterResultant(p,q,var);
subDiscr(p,var) :=
block([pcRes,pRes,cRes],
pcRes : sSubRes(p,diff(p,var),var),
pRes : first(pcRes/leadCoeff(expand(p),var)),
pRes : cons(first(pRes),expand(rest(pRes)/leadCoeff(expand(p),var))),
cRes : second(pcRes),
cRes : cons(first(cRes),expand(rest(cRes)/leadCoeff(expand(p),var))),
return([pRes,cRes])
); /* end proc */
subDiscrCoeff(p,var):=
block([cRes],
cRes : sSubResCoeff(p,diff(p,var),var),
cRes : cons(first(cRes)/leadCoeff(expand(p),var),expand(rest(cRes)/leadCoeff(expand(p),var))),
return(cRes)
); /* end proc */
discriminant(p,var):=
subDiscrCoeff(p,var)[degree(expand(p),var)+1];
/* --------------------------------------------- */
/* Part concerning the signed remainder sequence */
/* In the following S(P,Q) is the signed remainder sequence of P and Q */
/* Number of sign changes (notation "V") */
/* of sequence containing non-zero elements */
nonZeroSignChanges(seq) :=
block([variations,i],
variations:0,
if length(seq) > 1 then
for i:1 thru length(seq)-1 do
if seq[i]*seq[i+1] < 0 then
variations:variations+1,
return(variations)
); /* end proc */
signChanges(seq) :=
nonZeroSignChanges(trimZeros(seq));
/* Number of sign changes of a polynomial at a certain value */
/* Notation "V(P;a)" */
/* We use proposition 2.4 for the signs at infinities */
signChangesAt(seq,var,a) :=
if a = inf then
signChanges(makelist(leadCoeff(seq[i],var),i,1,length(seq)))
else
if a = -inf then
signChanges(makelist((-1)^(degree(seq[i],var))*
leadCoeff(seq[i],var),i,1,length(seq)))
else
signChanges(makelist(subst(a,var,seq[i]),i,1,length(seq)));
/* end proc */
/* Difference between the no. of changes a two points */
/* Notation "V(P;a,b)" */
signChangesDiff(seq,var,a,b) :=
signChangesAt(seq,var,a) - signChangesAt(seq,var,b);
/* Sign changes of the i-th coefficients of a polynomial */
/* Notation "V(P)" (P is a polynomial) */
signChangesPolyCoeff(poly,var) :=
signChanges(makelist(coeff(poly,var,i),i,0,degree(poly,var)));
/* Sequence of the derivatives of a polynomial */
/* Notation "Der(P)" */
derSeq(f,var) :=
makelist(diff(f,var,i),i,0,degree(f,var));
/* Cauchy Index */
/* Theorem 2.52 */
/* V(S(P,Q);a,b) = Ind(Q/P;a,b) */
sRemCauchyIndexBetween(num,den,var,a,b) :=
signChangesDiff(sRem(den,num,var),var,a,b);
sRemCauchyIndex(num,den,var) :=
signChangesDiff(sRem(den,num,var),
var,-inf,+inf);
/* Tarski query computed by Sylvester's theorem's formula */
/* Theorem 2.55 */
/* V(S(P,P'Q);a,b) = SQ(Q,P;a,b) */
sRemTarskiQueryBetween(q,p,var,a,b) :=
signChangesDiff(sRem(p,diff(p,var)*q,var),var,a,b);
sRemTarskiQuery(q,p,var) :=
signChangesDiff(sRem(p,diff(p,var)*q,var),
var,-inf,+inf);
/* Number of roots counted by Tarski's theorem's formula */
/* Theorem 2.56 */
/* V(S(P,P');a,b) */
sRemNumberOfRootsBetween(p,var,a,b) :=
sRemTarskiQueryBetween(1,p,var,a,b);
sRemNumberOfRoots(p,var) :=
sRemTarskiQuery(1,p,var);
/* Tarski sequence */
/* defined as: S(P,P') */
sturmSequence(p,var) :=
sRem(p,diff(p,var),var);
/* ------------------------------------------------- */
/* Part concerning signed subresultants coefficients */
/* and the Cauchy Index in all R(Subsection 9.1.2) */
/* Notation taken from Remark 4.36 and used by Notation 9.4 */
epsilon(x) :=
(-1)^(x*(x-1)/2);
/* It counts and removes the trailing zeros out of a sequence */
trimZeroCount(seq,count) :=
block([list,count,i],
list:[],
count:0,
if length(seq)>0 then
for i:1 thru length(seq) do
if seq[i] = 0 then
count:count+1
else
list:append(list,[seq[i]]),
return([list,count])
); /* end proc */
/* Interface function */
trimZero(seq) :=
trimZeroCount(seq,0);
/* Notation 9.4 ("D(s)") */
/* When there are no zeros this gives the difference between */
/* the sign permanencies and the number of sign changes */
genPermMVar(seq) :=
block([res,count,i],
res:0, i:1,
( while not(i>length(seq)-1) do
if not(seq[i]=0) then
(count:1,
(while (seq[i+count]=0 and not(i+count>length(seq)-1)) do count:count+1), /* end while */
( if remainder(count,2)=1 then
res:res+(-1)^((count)*(count-1)/2)*sgn(seq[i]*seq[i+count])),
i:i+count) /* end if */
else i:i+1), /* end while */
return(res)
); /* end proc */
/* Cauchy Index by signed subresultant */
/* Algorithm 9.27 */
sSubResCauchyIndex(q,p,var) :=
genPermMVar(sSubResCoeff(p,sPsRem(ratexpand(q),ratexpand(p),var),var));
/* Tarski Query by signed subresultant */
/* Algorithm 9.28 */
sSubResTarskiQuery(q,p,var) :=
genPermMVar(sSubResCoeff(p,sPsRem(ratexpand(diff(p,var)*q),p,var),var));
sSubResNumberOfRoots(p,var) :=
sSubResTarskiQuery(1,p,var);
/* ---------------------------------------------- */
/* Part concering the Bezoutian (subsection 9.1.3) */
/* Bezoutian (Notation 9.14) */
bez(p,q,var,x,y) :=
(subst(y,var,q) * subst(x,var,p) -
subst(x,var,q) * subst(y,var,p))/(x-y); /* end proc */
/* ----------------------------------------------- */
/* Part concerning the Cauchy Index on an interval */
/* (Subsection 9.1.5) */
/* Modified number of sign changes */
/* Notation 9.29, ("W(s)") */
/* Modified Sign Changes: */
/* counting as two sign changes the groups +,0,0,+ and -,0,0,- */
modifiedSignChanges(seq) :=
block([variations,i],
variations:signChanges(seq),
if length(seq) > 1 then
for i:1 thru length(seq)-3 do
if (seq[i+1]=0 and seq[i+2]=0 and seq[i]*seq[i+3] > 0) then
variations:variations+2,
return(variations)
); /* end proc */
/* Remove identically zero elements from a list */
removeZeros(seq) :=
block([list,i],
list:[],
if length(seq)>0 then
for i:1 thru length(seq) do
if not (seq[i] = 0) then
list:append(list,[seq[i]]),
return(list)
); /* end proc */
/* Modified Sign Changes at a certain value */
/* Notation "W(P;a)" */
modifiedSignChangesAt(seq,var,value) :=
if value = inf then
signChanges(makelist(leadCoeff(seq[i],var),i,1,length(seq)))
else
if value = -inf then
signChanges(makelist((-1)^(degree(seq[i],var))*
leadCoeff(seq[i],var),i,1,length(seq)))
else
modifiedSignChanges(subst(value,var,removeZeros(seq))); /* end proc */
/* Modified Sign Changes Difference */
/* Notation "W(P;a,b)" */
modifiedSignChangesDiff(seq,var,a,b) :=
modifiedSignChangesAt(seq,var,a)-
modifiedSignChangesAt(seq,var,b);
/* Cauchy Index in an interval computed by subresultants */
/* Theorem 9.30 */
/* W(SR(P,Q);a,b) = Ind(Q/P;a,b) */
sSubResCauchyIndexBetween(num,den,var,a,b) :=
modifiedSignChangesDiff(sSubResPol(den,sPsRem(num,den,var),var),var,a,b);
/* Tarski Query by subresultants */
/* Corallary 9.32 */
/* W(SR(P,Remainder(P,Q));a,b) = SQ(Q,P;a,b) */
sSubResTarskiQueryBetween(q,p,var,a,b) :=
modifiedSignChangesDiff(sSubResPol(p,
sPsRem(ratexpand(diff(p,var)*q),p,var),var),var,a,b);
/* Number of roots on an interval by signed subresultants */
/* Consequence of Corollary 9.32 */
sSubResNumberOfRootsBetween(p,var,a,b) :=
sSubResCauchyIndexBetween(diff(p,var),p,var,a,b);
/* ------------------------------- */
/* Part concerning Hankel Matrices */
/* It computes the signature of a Hankel quadratic form */
/* Algorithm 9.47 */
hankelSignature(seq) :=
block([m,n,sLen,trimRes,trimmed,count,c,p,q,t,i,SR,j,defective],
sLen : length(seq),
if evenp(sLen) then
(
print("hankelSignature) Number of elements must be odd"),
return(false)
), /* end if */
n : (sLen+1)/2,
trimRes : trimZero(seq),
if length(trimRes) = 0 then
return(0)
else
c:firstNonZeroIndex(seq),
(if c>=n then
(if oddp(c) then
return(sgn(seq[c]))
else
return(0)) /* end if */
else m:lastNonZeroIndex(seq),
(if m <= n then
(if oddp(2*n-m) then
return(sgn(seq[m]))
else
return(0)) /* end if */
else
(
p : t^m,
q : sum(seq[i]*t^(m-i),i,1,m),
SR : sSubResPol(p,q,t),
/* check of defectiveness */
j : m-n,
defective : true,
while defective do
if degree(SR[m-j+1],t) = j then
defective : false
else
j : j-1,
return(genPermMVar(
makelist(sSubResCoeff(p,q,t)[i],
i,1,m-j+1)))
) /* end else */
) /* end if */
) /* end if */
); /* end proc */
/* It build a Hankel matrix out of an odd-numbered sequence */
hankelMatrix(seq) :=
block([n,len],
len : length(seq),
n : (len+1)/2,
return(makelist(
makelist(
seq[i+j+1],
j,0,n-1),
i,0,n-1)
)
); /* end proc */
/* ----------------------------------------------------- */
/* Part concerning complex roots with negative real part */
evenPart(pol,var) :=
sum(ratcoeff(pol,var,i*2)*var^i,
i,0,floor(degree(pol,var)/2));
oddPart(pol,var) :=
sum(ratcoeff(pol,var,i*2+1)*var^i,
i,0,ceiling(degree(pol,var)/2));
lienardChipartConditions(pol,var) :=
block([F,G,SR,degP,m],
F : evenPart(pol,var),
G : oddPart(pol,var),
degP : degree(pol,var),
if evenp(degP) then
(
m = p/2,
SR : sSubResCoeff(F,G,var),
return(setify(append(poly2list(pol,var),SR)))
) /* end if */
else
(
m = (p-1)/2,
SR : sSubResCoeff(var*G,F,var),
return(setify(append(poly2list(pol,var),SR)))
) /* end else */
); /* end proc */
/* It computes the difference between the number of roots of P */
/* with positive real parts and the number of roots with negative real parts */
/* Theorem 9.48 (notation "n(P)") */
posNegDiff(a,var) :=
block([p,degP,m,f,g,i],
p : expandIf(a),
degP : degree(p,var),
if evenp(degP) then
(
m : degP/2,
f : sum(coeff(p,var,i*2)* var^i,i,0,m),
g : sum(coeff(p,var,i*2+1)*var^i,i,0,m-1),
return(-sSubResCauchyIndex(g,f,var)+
sSubResCauchyIndexBetween(sPsRem(var*g,f,x),f,var))
) /* end if */
else
(
m : (degP-1)/2,
f : sum(coeff(p,var,i*2)* var^i,i,0,m),
g : sum(coeff(p,var,2*i+1)* var^i,i,0,m),
return(-sRemCauchyIndexBetween(f,NORM_ALGORITHM(var*g),
var,-inf,+inf)+
sRemCauchyIndexBetween(f,g,
var,-inf,+inf))
) /* end else */
); /* end proc */
/* New name for Horner evaluation */
hornerEval(pol,var,value) :=saragHorner(pol,var,value) ;
saragHorner(pol,var,value) :=
block([res,i,degP],
degP : degree(pol,var),
res : leadCoeff(pol,var),
for i : 1 thru degP do
res : value*res+ratcoeff(pol,var,degP-i),
return(res)
); /* end proc */
|