File: state.mac

package info (click to toggle)
maxima 5.42.1-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 150,192 kB
  • sloc: lisp: 382,565; fortran: 14,666; perl: 14,365; tcl: 11,123; sh: 4,622; makefile: 2,688; ansic: 444; xml: 23; awk: 17; sed: 17
file content (109 lines) | stat: -rw-r--r-- 4,567 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
/*
This subroutine computes state variable equations
Copyright (C) 1999  Dan Stanger

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Library General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Dan Stanger dan.stanger@ieee.org
*/
/* load in readfile and tree */
/* get the filename from the user */
/* this code works around problems caused by:
   matrix.scalar does not simplify properly
   1 dimensional matrixes do not simplify properly
   empty matrixes do not remember how they were created
*/
f(m,n,p,q,r,s, MN, MB):=block([l,a_T, a_L,b_T,b_L,c_T,c_L],
    /* reorder the array a_pt and turn it into the a_T and a_L matrixes  */
    l:sortem(MN,MB),a_T:first(l),a_L:second(l),
    b_T:-transpose(a_L).invert(transpose(a_T)),
    b_L:ident(MN),
    c_T:ident(MN),
    c_L:-transpose(b_T),
    block([
	em:matrix(),
	c_LLC, c_LRC, c_LGC, c_LLR, c_LRR, c_LGR, c_LLG, c_LRG, c_LGG,
	b_TCL, b_TRL, b_TGL, b_TCR, b_TRR, b_TGR, b_TCG, b_TRG, b_TGG,
	x:transpose(append( /* state variable vector */
	    makelist(concat('v,pt_name[i]),i,1,m),
	    makelist(concat('i,pt_name[i]),i,m+n+p+1,m+n+p+q))),
	u:transpose(append(makelist(
		if pt_V[i] = false then pt_name[i] else pt_V[i],
		i,m+n+1,m+n+p),
	    makelist(
		if pt_V[i] = false then pt_name[i] else pt_V[i],
		i,m+n+p+q+r+1,m+n+p+q+r+s))),
	r_L,g_T,se,sx,su,e1,e2,e3,e4],
	if length(x) = 1 then x:x[1],
	if length(u) = 1 then u:u[1],
	submat_m(c_LLC, c_L, 1 .. m,		1 .. q),
	submat_m(c_LRC, c_L, 1 .. m,		(q+1) .. (q+r)),
	submat_m(c_LGC, c_L, 1 .. m,		(q+r+1) .. (q+r+s)),
	submat_m(c_LLR, c_L, (m+1) .. (m+n),	1 .. q),
	submat_m(c_LRR, c_L, (m+1) .. (m+n),	(q+1) .. (q+r)),
	submat_m(c_LGR, c_L, (m+1) .. (m+n),	(q+r+1) .. (q+r+s)),
	submat_m(c_LLG, c_L, (m+n+1) .. (m+n+p),	1 .. q),
	submat_m(c_LRG, c_L, (m+n+1) .. (m+n+p),	(q+1) .. (q+r)),
	submat_m(c_LGG, c_L, (m+n+1) .. (m+n+p),	(q+r+1) .. (q+r+s)),

	submat_m(b_TCL, b_T, 1 .. q,		1 .. m),
	submat_m(b_TRL, b_T, 1 .. q,		(m+1) .. (m+n)),
	submat_m(b_TGL, b_T, 1 .. q,		(m+n+1) .. (m+n+p)),
	submat_m(b_TCR, b_T, (q+1) .. (q+r),	1 .. m),
	submat_m(b_TRR, b_T, (q+1) .. (q+r),	(m+1) .. (m+n)),
	submat_m(b_TGR, b_T, (q+1) .. (q+r),	(m+n+1) .. (m+n+p)),
	submat_m(b_TCG, b_T, (q+r+1) .. (q+r+s),	1 .. m),
	submat_m(b_TRG, b_T, (q+r+1) .. (q+r+s),	(m+1) .. (m+n)),
	submat_m(b_TGG, b_T, (q+r+1) .. (q+r+s),	(m+n+1) .. (m+n+p)),

	r_L:makelist(pt_name[i],i,m+n+p+q+1,m+n+p+q+r),
	if length(r_L) > 0 then r_L:apply(diag_matrix,r_L) else r_L:em,
	g_T:makelist(1/pt_name[i],i,m+1,m+n),
	if length(g_T) > 0 then g_T:apply(diag_matrix,g_T) else g_T:em,
	/* compute free response */
	e1:mat_unblocker(
	    matrix2([zeromatrix2(mat_nrows_m(c_LRC),mat_ncols_m(b_TRL)),c_LRC],
		[b_TRL,zeromatrix2(mat_nrows_m(b_TRL),mat_ncols_m(c_LRC))])),
	e2:block([e:matrix2([b_TRR,r_L], [g_T, c_LRR])],
	    if matrixp(e) then invert(e) else 1/e),
	e3:mat_unblocker(
	    matrix2( [b_TCR, zeromatrix2(mat_nrows_m(b_TCR),mat_ncols_m(c_LLR))],
		[zeromatrix2(mat_nrows_m(c_LLR),mat_ncols_m(b_TCR)),c_LLR])),
	e4:mat_unblocker(
	matrix2([zeromatrix2(mat_nrows_m(c_LLC),mat_ncols_m(b_TCL)),c_LLC],
		[b_TCL,zeromatrix2(mat_nrows_m(b_TCL),mat_ncols_m(c_LLC))])),
	sx:(e1.e2.e3),
	if e4 # em then sx:sx-e4, /* check no link inductors */
	sx:if matrixp(x) then sx.x else x*sx, /* if x is scalar use * mult */
	/* compute source response */
	e3:mat_unblocker(
	    matrix2( [b_TGR, zeromatrix2(mat_nrows_m(b_TGR),mat_ncols_m(c_LGR))],
		[zeromatrix2(mat_nrows_m(c_LGR),mat_ncols_m(b_TGR)),c_LGR])),
	e4:mat_unblocker(
	matrix2([zeromatrix2(mat_nrows_m(c_LGC),mat_ncols_m(b_TGL)),c_LGC],
		[b_TGL,zeromatrix2(mat_nrows_m(b_TGL),mat_ncols_m(c_LGC))])),
	su:(e1.e2.e3),
	if e4 # em then su:su-e4,
	su:if matrixp(u) then su.u else u*su,
	se:sx+su,
	/* try to remove . if its there */
	if not matrixp(se) then subst("*",".",sx+su) else se
    )
)$
state():=
block([filename:read("enter the filename"), se],
    /* compute the proper tree and use apply to destructure it */
    se:apply(f,propertree(filename)))
$