1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
;;;
;;; GRAPHS - graph theory package for Maxima
;;;
;;; Copyright (C) 2007 Andrej Vodopivec <andrej.vodopivec@gmail.com>
;;;
;;; This program is free software; you can redistribute it and/or modify
;;; it under the terms of the GNU General Public License as published by
;;; the Free Software Foundation; either version 2 of the License, or
;;; (at your option) any later version.
;;;
;;; This program is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU General Public License
;;; along with this program; if not, write to the Free Software
;;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
;;;
(in-package :maxima)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; matching algorithms
;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defmfun $max_matching (gr)
(require-graph 'maximum_matching 1 gr)
(let ((partition (cdr ($bipartition gr))))
(if (null partition)
(maximum-matching-general gr)
(maximum-matching-bipartite gr (cdr (car partition)) (cdr (cadr partition))))))
;;;;;;;;;;
;;
;; the bipartite case
;;
(defun maximum-matching-bipartite (gr a b &optional cover)
(let ((matching (make-hash-table))
(done))
;; greedy matching
(loop for e in (edges gr) do
(let ((u (first e))
(v (second e)))
(when (and (null (gethash u matching))
(null (gethash v matching)))
(setf (gethash u matching) v)
(setf (gethash v matching) u))))
;; augment the matching
(loop while (not done) do
(setq done t)
(let ((au) (bu))
;; find unmatched vertices
(loop for u in a do
(when (null (gethash u matching))
(push u au)))
(loop for u in b do
(when (null (gethash u matching))
(push u bu)))
;; find augmenting path
(when (not (or (null au)
(null bu)))
(let ((prev (make-hash-table))
(new1 au) (new2) (x))
(loop while (not (null new1)) do
;; add edges in M^c
(setq new2 ())
(loop for u in new1 do
(loop for v in (neighbors u gr) do
(when (and (null (gethash v prev))
(or (null (gethash v matching))
(not (= (gethash v matching) u))))
(setf (gethash v prev) u)
(push v new2))))
(setq new1 ())
;; add edges in M
(loop for v in new2 do
(let ((u (gethash v matching)))
(unless (null u)
(push u new1)
(setf (gethash u prev) v)))))
;; chech for augmenting path
(loop for v in bu while (null x) do
(unless (null (gethash v prev))
(setq x v)))
;; extend the matching
(unless (null x)
(setq done nil)
(loop while (not (null x)) do
(let ((u x)
(v (gethash x prev)))
(setf (gethash u matching) v)
(setf (gethash v matching) u)
(setq x (gethash v prev))))) )) ))
(if (null cover)
;; we want the matching
(let ((mmatching ()))
(maphash #'(lambda (u v) (if (< u v)
(setq mmatching (cons `((mlist simp) ,u ,v) mmatching))))
matching)
(cons '(mlist simp) mmatching))
;; we want the vertex cover
(get-cover-from-matching gr a matching)) ))
(defun get-cover-from-matching (gr a matching)
(let ((au) (cov))
(loop for x in (cdr a) do
(when (null (gethash x matching))
(push x au)))
(if (null au)
`((mlist simp) ,@(sort (cdr a) #'<))
;; construct the Hungarian tree
(let ((prev (make-hash-table))
(new1 au) (new2))
(loop while (not (null new1)) do
;; add edges in M^c
(setq new2 ())
(loop for u in new1 do
(loop for v in (neighbors u gr) do
(when (and (null (gethash v prev))
(or (null (gethash v matching))
(not (= (gethash v matching) u))))
(setf (gethash v prev) u)
(push v new2))))
(setq new1 ())
;; add edges in M
(loop for v in new2 do
(let ((u (gethash v matching)))
(unless (null u)
(push u new1)
(setf (gethash u prev) v)))))
(maphash #'(lambda (u v)
(when (member v a)
(if (null (gethash v prev))
(push v cov)
(push u cov))))
matching)
`((mlist simp) ,@(sort cov #'<))))))
;;;;;;;;;;;
;;
;; set partiton using hash-tales
;;
(defun main-vertex (v sp)
(let ((m v))
(loop while (not (= m (gethash m sp))) do
(setq m (gethash m sp)))
(setf (gethash v sp) m)
m))
(defun join-sets (v u sp)
(setf (gethash (main-vertex u sp) sp)
(main-vertex v sp)))
(defun set-main-vertex (m v sp)
(setf (gethash (main-vertex v sp) sp) m)
(setf (gethash m sp) m))
;;;;;;;;;;;
;;
;; the general case
;;
(defvar *matching-state*)
(defvar *matching-matching*)
(defvar *matching-bridge*)
(defvar *matching-prev*)
(defvar *matching-path*)
(defun maximum-matching-general (gr)
(let ((*matching-matching* (make-hash-table))
(done))
;; greedy matching
(loop for e in (edges gr) do
(let ((u (first e))
(v (second e)))
(when (and (null (gethash u *matching-matching*))
(null (gethash v *matching-matching*)))
(setf (gethash u *matching-matching*) v)
(setf (gethash v *matching-matching*) u))))
;; augment the matching
(loop while (not done) do
(setq done t)
(let ((unmatched-vertices)
(dfsnum)
(dfsnum-curr)
(vertex-partition)
(*matching-state*)
(*matching-bridge* (make-hash-table))
(active-edges)
(*matching-prev* (make-hash-table))
(x))
;; find unmatched vertices
(loop for v in (vertices gr) do
(when (null (gethash v *matching-matching*))
(push v unmatched-vertices)))
(loop for first-vertex in unmatched-vertices while (null x) do
(setq dfsnum (make-hash-table))
(setq dfsnum-curr 0)
(setq *matching-state* (make-hash-table))
(setq *matching-bridge* (make-hash-table))
(setq vertex-partition (make-hash-table))
(setq *matching-state* (make-hash-table))
(setf (gethash first-vertex *matching-state*) 'A)
(setq active-edges ())
(loop for v in (vertices gr) do
(setf (gethash v vertex-partition) v))
(loop for u in (neighbors first-vertex gr) do
(push (list first-vertex u) active-edges))
;; find augmenting path
(loop while (and (not (null active-edges)) (null x)) do
(let* ((e (pop active-edges))
(v (first e))
(w (second e))
(v-main (main-vertex v vertex-partition))
(w-main (main-vertex w vertex-partition)))
(when (null (gethash v-main dfsnum))
(setf (gethash v-main dfsnum) dfsnum-curr)
(incf dfsnum-curr))
(cond
;; we found an agugmented path
((and (member w-main unmatched-vertices)
(not (= w-main first-vertex)))
(setf (gethash w-main *matching-prev*) v)
(setq x w-main))
;; we didn't visit w yet
((null (gethash w-main *matching-state*))
(setf (gethash w-main *matching-state*) 'B)
(let ((z (gethash w-main *matching-matching*)))
(setf (gethash z *matching-state*) 'A)
(loop for x in (neighbors z gr) do
(unless (= x w-main)
(push (list z x) active-edges))))
(setf (gethash w-main *matching-prev*) v))
;; found a blossom
((and (not (= w-main v-main)) ;; in the same blossom already
(eql (gethash w-main *matching-state*) 'A))
(let ((fst) (lst) (b))
(if (> (gethash w-main dfsnum)
(gethash v-main dfsnum))
(setq fst w-main
lst v-main
b (list w v))
(setq fst v-main
lst w-main
b (list v w)))
(let ((tmp-vrt fst))
(loop while (not (= tmp-vrt lst)) do
(setf (gethash tmp-vrt *matching-bridge*) b)
(join-sets lst tmp-vrt vertex-partition)
(if (eql (gethash tmp-vrt *matching-state*) 'A)
(progn
(setq tmp-vrt (main-vertex (gethash tmp-vrt *matching-matching*)
vertex-partition))
(loop for u in (neighbors tmp-vrt gr) do
(setq u (main-vertex u vertex-partition))
(push (list tmp-vrt u) active-edges)))
(progn
(setq tmp-vrt (main-vertex (gethash tmp-vrt *matching-prev*)
vertex-partition))))))) )
)))
;; augment the path
(unless (null x)
(setq done nil)
(let ((*matching-path* (list x)))
(find-augmenting-path first-vertex (gethash x *matching-prev*))
(loop while *matching-path* do
(let ((a (car *matching-path*))
(b (cadr *matching-path*)))
(setf (gethash a *matching-matching*) b)
(setf (gethash b *matching-matching*) a)
(setf *matching-path* (cddr *matching-path*))))
))) ))
(let ((matching ()))
(maphash #'(lambda (u v) (if (< u v) (setq matching (cons `((mlist simp) ,u ,v) matching))))
*matching-matching*)
(cons '(mlist simp) matching))))
;; returns the path from b to a
(defun find-augmenting-path (a b)
(cond
((= a b)
(push a *matching-path*))
((eql (gethash b *matching-state*) 'A)
(push b *matching-path*)
(push (gethash b *matching-matching*) *matching-path*)
(find-augmenting-path a (gethash (gethash b *matching-matching*) *matching-prev*)))
(t
(push b *matching-path*)
(find-augmenting-path-1 (gethash b *matching-matching*) (first (gethash b *matching-bridge*)))
(find-augmenting-path a (second (gethash b *matching-bridge*)))) ))
(defun find-augmenting-path-1 (a b)
(cond
((= a b)
(push a *matching-path*))
((eql (gethash b *matching-state*) 'A)
(find-augmenting-path-1 a (gethash (gethash b *matching-matching*) *matching-prev*))
(push (gethash b *matching-matching*) *matching-path*)
(push b *matching-path*))
(t
(find-augmenting-path-1 a (second (gethash b *matching-bridge*)))
(find-augmenting-path (gethash b *matching-matching*) (first (gethash b *matching-bridge*)))
(push b *matching-path*)) ))
|