File: linalg-utilities.lisp

package info (click to toggle)
maxima 5.42.1-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 150,192 kB
  • sloc: lisp: 382,565; fortran: 14,666; perl: 14,365; tcl: 11,123; sh: 4,622; makefile: 2,688; ansic: 444; xml: 23; awk: 17; sed: 17
file content (168 lines) | stat: -rw-r--r-- 6,642 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
;;  Copyright 2005 by Barton Willis

;;  This is free software; you can redistribute it and/or
;;  modify it under the terms of the GNU General Public License,
;;  http://www.gnu.org/copyleft/gpl.html.

;; This software has NO WARRANTY, not even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

($put '$linalgutilities 2 '$version)

(defun inform (level pck msg &rest arg)
  (if (member level (member ($get '$infolevel pck) `($debug $verbose $silent)))
      (apply 'mtell `(,msg ,@arg))))

(defun $require_nonempty_matrix (m pos fun)
  (if (not (and ($matrixp m) (> ($length m) 0) (> ($length ($first m)) 0)))
      (merror "The ~:M argument of the function ~:M must be a nonempty matrix" pos fun)))

;; Why both some and every? Because we want blockmatrixp(matrix()) --> false.

(defun $blockmatrixp (m) 
  (and ($matrixp m) ($some '$matrixp m) ($every '$matrixp m)))

(defun $require_matrix (m pos fun)
  (if (not ($matrixp m))
      (merror "The ~:M argument of the function ~:M must be a matrix" pos fun)))

(defun $require_unblockedmatrix (m pos fun)
  (if (or (not ($matrixp m)) ($blockmatrixp m))
      (merror "The ~:M argument of the function ~:M must be an unblocked matrix" pos fun)))

(defun $require_square_matrix (m pos fun)
  (if (not (and ($matrixp m) (= ($length m) ($length ($first m)))))
      (merror "The ~:M argument of the function ~:M must be a square matrix" pos fun)))

(defun array-elem (m i j)
  (nth j (nth i m)))

(defun $require_symmetric_matrix (m pos fun)
  (if (not ($matrixp m)) (merror "The ~:M argument to ~:M must be a matrix" pos fun))
  (let ((n ($matrix_size m)))
    (if (not (= ($first n) ($second n)))
	(merror "The ~:M argument to ~:M must be a square matrix" pos fun))
    (if (not ($zeromatrixp (sub m ($transpose m))))
	(merror "The ~:M argument to ~:M must be a symmetric matrix" pos fun)))
  '$done)

(defun $require_real_symmetric_matrix (m pos fun)
  (if (not ($matrixp m)) (merror "The ~:M argument to ~:M must be a matrix" pos fun))
  (let ((n ($matrix_size m)))
    (if (not (= ($first n) ($second n)))
	(merror "The ~:M argument to ~:M must be a square matrix" pos fun))
    (if (and ($zeromatrixp (sub m ($transpose m))) ($zeromatrixp (sub m (take '($conjugate) m)))) '$done
      (merror "The ~:M argument to ~:M must be a real symmetric matrix" pos fun))))
 
(defun $require_selfadjoint_matrix (m fun pos)
  (if (not ($matrixp m)) (merror "The ~:M argument to ~:M must be a matrix" pos fun))
  (let ((n ($matrix_size m)))
    (if (not (= ($first n) ($second n)))
	(merror "The ~:M argument to ~:M must be a square matrix" pos fun))
    (if (not ($zeromatrixp (sub m ($ctranspose m))))
	(merror "The ~:M argument to ~:M must be a selfadjoint (hermitian) matrix" pos fun)))
  '$done)

;; matrix() is a 0 x 0 matrix, and matrix([]) is a 1 x 0 matrix.
;; There is no representation for a 0 x 1 matrix. Currently,
;; transpose(matrix([])) => matrix(). And that's a bug. 

(defun $matrix_size(m)
  ($require_matrix m "$first" "$matrix_size")
  `((mlist) ,($length ($args m)) ,(if ($emptyp ($args m)) 0 ($length ($first ($args m))))))
  
(defun $require_list (lst pos fun)
  (if (not ($listp lst))
      (merror "The ~:M argument of the function ~:M must be a list" pos fun)))

(defun $require_posinteger(i pos fun)
  (if (not (and (integerp i) (> i 0)))
      (merror "The ~:M argument of the function ~:M must be a positive integer" pos fun)))

(defun matrix-map (f mat)
  (setq mat (mapcar 'cdr (cdr mat)))
  (setq mat (mapcar #'(lambda (s) (mapcar f s)) mat))
  (setq mat (mapcar #'(lambda (s) (cons `(mlist simp) s)) mat))
  `(($matrix simp) ,@mat))  

;; Map the lisp function fn over the matrix m. This function is block matrix friendly.

(defun full-matrix-map (fn m)
  (if (or ($listp m) ($matrixp m))
      (cons (car m) (mapcar #'(lambda (s) (full-matrix-map fn s)) (cdr m)))
    (funcall fn m)))

(defun $zerofor (mat &optional (fld-name '$generalring))
  (let* ((fld ($require_ring fld-name "$second" "$zerofor"))
	(add-id (funcall (mring-mring-to-maxima fld) (funcall (mring-add-id fld)))))
    (zerofor mat add-id)))

(defun zerofor (mat zero)
  (if (or ($matrixp mat) ($listp mat))
      (cons (car mat) (mapcar #'(lambda (s) (zerofor s zero)) (cdr mat)))
    zero))

;; Return an identity matrix that has the same shape as the matrix
;; mat. The first argument 'mat' should be a square Maxima matrix or a 
;; non-matrix. When 'mat' is a matrix, each entry of 'mat' can be a
;; square matrix -- thus 'mat' can be a blocked Maxima matrix. The
;; matrix can be blocked to any (finite) depth.

(defun $identfor (mat &optional (fld-name '$generalring))
  (let* ((fld ($require_ring fld-name "$second" "$zerofor"))
	 (add-id (funcall (mring-mring-to-maxima fld) (funcall (mring-add-id fld))))
	 (mult-id (funcall (mring-mring-to-maxima fld) (funcall (mring-mult-id fld)))))
    (if ($matrixp mat) (identfor mat add-id mult-id) mult-id)))

(defun identfor (mat zero one)
  (let ((i) (acc) (j) (new-mat))
    (setq mat (rest mat))
    (setq i 0)
    (dolist (row mat)
      (setq row (rest row))
      (setq acc nil)
      (setq j 0)
      (dolist (aij row)
	(push (cond (($matrixp aij)
		     (if (= i j) (identfor aij zero one) (zerofor aij zero)))
		    ((= i j) one)
		    (t zero)) acc)
	(incf j))
      (incf i)
      (push '(mlist) acc)
      (push acc new-mat))
    (push '($matrix) new-mat)))

(defun $ctranspose (m)
  (mfuncall '$transpose (full-matrix-map #'(lambda (s) (simplifya `(($conjugate) ,s) nil)) m)))
 
(defun $zeromatrixp (m)
  (if (or ($matrixp m) ($listp m)) (every '$zeromatrixp (cdr m))
    (eq '$zero (csign ($rectform m)))))
	
(defun array-to-row-list (mat &optional (fn 'identity))
  (let ((acc) (r (array-dimensions mat)) (row) (c))
    (setq c (second r))
    (setq r (first r))
    (dotimes (i r)
      (setq row nil)
      (dotimes (j c)
	(push (funcall fn (aref mat i j)) row))
      (setq row (reverse row))
      (push row acc))
    (reverse acc)))
  
(defun array-to-maxima-matrix (mat &optional (fn 'identity))
  (cons '($matrix) (mapcar #'(lambda (s) (cons '(mlist) s)) (array-to-row-list mat fn))))

(defun array-to-maxima-list (ar &optional (fn 'identity))
  (cons '(mlist) (mapcar fn (coerce ar 'list))))
  
(defun maxima-to-array (mat &optional (fn 'identity) typ)
  (let ((r ($matrix_size mat)) (c))
    (setq c ($second r))
    (setq r ($first r))
    (setq mat (mapcar #'cdr (cdr mat)))
    (setq mat (mapcar #'(lambda (s) (mapcar #'(lambda (w) (funcall fn w)) s)) mat))
    (if typ (make-array (list r c) :element-type typ :initial-contents mat)
      (make-array (list r c) :initial-contents mat))))