1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
Installation
To use linalg, you'll need to have nset version 1.203. If you
are using Maxima 5.9.1cvs or better, you already have the required
version of nset. Otherwise you'll need to download and install nset.
You may download nset from http://www.unk.edu/facstaff/profiles/willisb/.
You will need to append the path to linearalgebra to
file_search_maxima and file_search_lisp. If the path to
the directory linearalgebra is "c:/maxima/linearalgebra", you will
use the Maxima commands
(%i1) file_search_maxima : cons("c:/maxima/linearalgebra/###.{mac}",file_search_maxima)$
(%i2) file_search_lisp : cons("c:/maxima/linearalgebra/###.{lisp}",file_search_lisp)$
Now you should be able to load and use linalg.
(%i3) load("linalg");
Warning - you are redefining the MACSYMA function EIGENVALUES
Warning - you are redefining the MACSYMA function EIGENVECTORS
Warning - you are redefining the MACSYMA function RANK
(%o3) c:/maxima/linearalgebra/linalg.mac
(%i4) m : matrix([1-z,2],[5,8-z]);
(%o4) matrix([1-z,2],[5,8-z])
(%i5) ptriangularize(m,z);
(%o5) matrix([5,8-z],[0,-z^2/5+(9*z)/5+2/5])
columnop(m,i,j,theta)
If m is a matrix, return the matrix that results from doing the
column operation Ci <- Ci - theta * Cj. If m doesn't have a row
i or j, signal an error.
columnswap(m,i,j)
If m is a matrix, swap columns i and j. If m doesn't have a column
i or j, signal an error.
columnspace(m)
If m is a matrix, return span(v1,v2,...,vn), where the set
{v1,v2,...,vn} is a basis for the column space of m. The span
of the empty set is {0}. Thus, when the column space has only
one member, return span().
ctranspose(m)
Return the conjugate of the transpose of the matrix m. If m is
a block matrix, transpose and conjugate each block.
dotproduct(u,v)
Return the dotproduct of vectors u and v. This is the same
as conj(transpose(u)) . v. The arguments u and v must be
n x 1 matrices.
get_lu_factors(x)
When x = lu_factor(A), then get_lu_factors returns a list of the
form [P, L, U], where P is a permutation matrix, L is lower triangular with
ones on the digonal, and U is upper triangular. And A = P L U.
hilbert_matrix(n)
Return the n by n Hilbert matrix. When n isn't a nonnegative
integer, signal an error.
kronecker_product(a,b)
Return the Kronecker product of the matrices a and b.
listp (e, {pred})
Given an optional argument pred, return true if e is
a Maxima list and pred evaluates to true for every list element.
When listp is not given the optional argument, return true if e is
a Maxima list. In all other cases, return false.
locate_matrix_entry(m, r1, c1, r2, c2, fn, rel)
The first argument must be a matrix; the arguments
r1 through c2 determine a sub-matrix of m that consists of
rows r1 through r2 and columns c1 through c2.
Find a entry in the sub-matrix m that satisfies some property.
Three cases:
(1) rel = bool and fn a predicate:
Scan the sub-matrix from left to right then top to bottom,
and return the index of the first entry that satisfies the
predicate fn. If no matrix entry satisfies fn, return false.
(2) rel = 'max and fn real-valued:
Scan the sub-matrix looking for an entry that maximizes fn.
Return the index of a maximizing entry.
(3) rel = 'min and fn real-valued:
Scan the sub-matrix looking for an entry that minimizes fn.
Return the index of a minimizing entry.
lu_backsub(m, b fld)
When m = lu_factor(A), then lu_backsub(m,b, fld) solves the linear
systme A x = b.
lu_factor(m, generalfield)
Return a list of the form [LU, perm, {cnd}], where
(1) The matrix LU contains the factorization of m in a packed form. Packed
form means three things: First, the rows of LU are permuted according to the
list perm. If, for example, perm is the list [3,2,1], the actual first row
of the LU factorization is the third row of the matrix LU. Second,
the lower triangular factor of m is the lower triangular part of LU with the
diagonal entries replaced by all ones. Third, the upper triangular factor of
m is the upper triangular part of LU.
(2) When the field is either 'floatfield' or 'complexfloatfield,'
the number 'cnd' is an upper bound for the infinity norm condition number of m.
For all other fields, the condition number isn't estimated. For these fields,
lu_factor returns a two item list.
The argument m must be a square matrix.
The argument 'fld' must be a symbol that determines a field. The pre-defined
fields are:
(a) generalfield -- the field of Maxima expressions,
(b) floatfield -- the field of floating point numbers of the type double,
(c) complexfloatfield -- the field of complex floating point numbers of the
type double,
(d) crefield -- the field of Maxima CRE expressions,
(e) rationalfiled -- the field of rational numbers.
When the field is floatfield or complexfloatfield, the algorithm uses partial
pivoting; when the field is generalfield, rows are switched only when needed to
avoid a zero pivot.
Floating point addition arithmetic isn't associative, so the meaning of 'field'
differs from the mathematical definition.
There is no user-interface for defining a new field. A user that is familiar with
Common Lisp should be able to define a new field.
To compute the factorization, the first task is to convert each matrix entry
to a member of the indicated field. When conversion isn't possible, the factorization
halts with an error message. Members of the field needn't be Maxima expressions.
Members of the complexfloatfield, for example, are Common Lisp complex numbers. Thus
after computing the factorization, the matrix entries must be converted to Maxima
expressions.
See also get_lu_factors.
Examples
(%i1) w[i,j] := ?random(1.0) + %i * ?random(1.0)$
Evaluation took 0.00 seconds (0.00 elapsed)
(%i2) m : genmatrix(w,100,100)$
Evaluation took 00.30 seconds (00.30 elapsed)
(%i3) lu_factor(m,complexfloatfield)$
Evaluation took 1.45 seconds (1.45 elapsed)
(%i4) lu_factor(m,generalfield)$
Evaluation took 12.10 seconds (12.10 elapsed)
(%i1) m : matrix([1-z,3],[3,8-z]);
(%o1) matrix([1-z,3],[3,8-z])
(%i2) lu_factor(m,generalfield);
(%o2) [matrix([1-z,3],[3/(1-z),-z-9/(1-z)+8]),[1,2]]
(%i3) get_lu_factors(%);
(%o3) [matrix([1,0],[0,1]),matrix([1,0],[3/(1-z),1]),matrix([1-z,3],[0,-z-9/(1-z)+8])]
(%i4) %[1] . %[2] . %[3];
(%o4) matrix([1-z,3],[3,8-z])
mat_norm(m, p)
Return the matrix p-norm of the matrix m. The allowed values for p are
1, inf, and frobenius (the Frobenius matrix norm). The matrix m should be
an unblocked matrix.
matrixp (e, {pred})
Given an optional argument pred, return true if e is
a matrix and pred evaluates to true for every matrix element.
When matrixp is not given an optional argument, return true
if e is a matrix. In all other cases, return false.
nonnegintegerp (n)
Return true if and only if n >= 0 and n is an integer.
nullspace(m)
If m is a matrix, return span(v1,v2,...,vn), where the set {v1,v2,...,vn}
is a basis for the nullspace of m. The span of the empty set is {0}.
Thus, when the nullspace has only one member, return span().
nullity(m)
If m is a matrix, return the dimension of the nullspace of m.
orthogonal_complement(v1,v2,...,vn)
Return span(u1,u2,...,um), where the set {u1,u2,...,um} is a
basis for the orthogonal complement of the set(v1,v2,...,vn).
Each vector v1 through vn must be a n x 1 matrix.
polynomialp(p, l, {(coeffp 'constantp), (exponp 'nonnegintegerp)})
Return true if p is a polynomial in the variables in the Maxmia list l,
The predicate coeffp (default constantp) must evaluate to true for each
coefficient, and the predicate exponp must evaluate to true for all
exponents of the variables in the list l. If you want to use a non-default
value for exponp, you must supply coeffp with a value even if you want
to use the default for coeffp.
The polynomial needn't be expanded:
(%i1) polynomialp((x+1)*(x+2),[x]);
(%o1) true
(%i2) polynomialp((x+1)*(x+2)^a,[x]);
(%o2) false
An example using non-default values for coeffp and exponp:
(%i3) polynomialp((x+1)*(x+2)^(3/2),[x],numberp,numberp);
(%o3) true
(%i4) polynomialp((x^(1/2)+1)*(x+2)^(3/2),[x],numberp,numberp);
(%o4) true
Polynomials with two variables:
(%i5) polynomialp(x^2 + 5*x*y + y^2,[x]);
(%o5) false
(%i6) polynomialp(x^2 + 5*x*y + y^2,[x,y]);
(%o6) true
polytocompanion(p,x)
If p is a polynomial in x, return the companion matrix of p. For
a monic polynomial p of degree n, we have p = (-1)^n charpoly(polytocompanion(p, x)).
When p isn't a polynomial in x, signal an error.
ptriangularize(m,v)
If m is a matrix with each entry a polynomial in v, return
a matrix m' such that
(1) m' is upper triangular,
(2) m' = E_n ... E_1 m, where E1 through En are elementary matrices
whose entries are polynomials in v,
(3) |det(m)| = |det(m')|,
Note: This function doesn't check that every entry is a polynomial in v.
rowop(m,i,j,theta)
If m is a matrix, return the matrix that results from doing the
row operation Ri <- Ri - theta * Rj. If m doesn't have a row
i or j, signal an error.
rowswap(m,i,j)
If m is a matrix, swap rows i and j. If m doesn't have a row
i or j, signal an error.
mat_unblocker(m)
If m is a block matrix, return its unblocked form. If m is a matrix,
return m; otherwise, signal an error. If you use block matrices,
most likely you'll want to set matrix_element_mult : "." and
matrix_element_transpose : 'transpose.
Example
(%i1) a : matrix([1,2],[3,4])$
(%i2) b : matrix([7,8],[9,10])$
(%i3) matrix([a,b]);
(%o3) matrix([matrix([1,2],[3,4]),matrix([7,8],[9,10])])
(%i4) mat_unblocker(%);
(%o4) matrix([1,2,7,8],[3,4,9,10])
vandermonde_matrix([x1,x2,...,xn])
Return a n by n matrix whose i-th row is
[1, xi, xi^2, ... xi^(n-1)].
zeromatrixp(m)
If is(equal(e,0)) is true for each entry of the matrix m, return true; otherwise,
return false. When m is not a matrix, signal an error.
Short demo:
(%i1) batch("linalg.demo");
batching #pc:/maxima/linearalgebra/linalg.demo
(%i2) load(linalg)
(%o2) c:/maxima/linearalgebra/linalg.mac
(%i3) m:matrix([1,2],[1,2])
(%o3) matrix([1,2],[1,2])
(%i4) nullspace(m)
(%o4) span(matrix([1],[-1/2]))
(%i5) columnspace(m)
(%o5) span(matrix([1],[1]))
(%i6) ptriangularize(m-z*ident(2),z)
(%o6) matrix([1,2-z],[0,3*z-z^2])
(%i7) m:matrix([1,2,3],[4,5,6],[7,8,9])-z*ident(3)
(%o7) matrix([1-z,2,3],[4,5-z,6],[7,8,9-z])
(%i8) mm:ptriangularize(m,z)
(%o8) matrix([4,5-z,6],[0,66/49,-z^2/7+(102*z)/49+132/49],[0,0,(49*z^3)/264-(245*z^2)/88-(147*z)/44])
(%i9) algebraic:true
(%o9) true
(%i10) tellrat(mm[3,3])
(%o10) [z^3-15*z^2-18*z]
(%i11) mm:ratsimp(mm)
(%o11) matrix([4,5-z,6],[0,66/49,-(7*z^2-102*z-132)/49],[0,0,0])
(%i12) nullspace(mm)
(%o12) span(matrix([1],[(z^2-14*z-16)/8],[-(z^2-18*z-12)/12]))
(%i13) m:matrix([1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16])
(%o13) matrix([1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16])
(%i14) column_space(m)
(%o14) column_space(matrix([1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]))
(%i15) apply('orthogonal_complment,args(nullspace(transpose(m))))
(%o15) orthogonal_complment(matrix([0],[1],[-2],[1]),matrix([1],[0],[-3],[2]))
|