File: functs.dem

package info (click to toggle)
maxima 5.42.1-1
  • links: PTS
  • area: main
  • in suites: buster
  • size: 150,192 kB
  • sloc: lisp: 382,565; fortran: 14,666; perl: 14,365; tcl: 11,123; sh: 4,622; makefile: 2,688; ansic: 444; xml: 23; awk: 17; sed: 17
file content (25 lines) | stat: -rw-r--r-- 1,176 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
load("functs");
[a,b,c,d,e];  rempart(%,[3,4]);  /*  RATMX:TRUE; */
/* Find out whether these functions are linearly dependent or
	linearly independent. */  [sin(x),cos(x),sin(x-1)];
/* The Wronskian matrix */  wronskian(%,x);
/* The Wronskian determinant is zero.  Thus the three given
	functions are linearly dependent. */  expand(determinant(%));

(2-3*%i)/(%i+4);  conjugate(%);
matrix([1,0,5*%i],[-2*%i,2,0],[1,1+%i,0]);
conjugate(%);  expand(adjoint(%th(2)));  tracematrix(%th(3));
(2+%i)/(3-%i);  rational(%);  
logand(15,5); logxor(5,6);  logor(4,9);
/* uprobe([foo,bar]);  uprobe([functs,demo,share]); */

nonzeroandfreeof(z,y+4); /* 3*z+(y+1)*z+y^2;
 This expression is re-formed first as linear in z, then as
	quadratic in y  linear(%,z);  quadratic(%th(2),y); */
gcdivide(a*x-b*x,a*x+b*x);  gcdivide(a^2-b^2,a^2-2*a*b+b^2);
lcm(expand((x+y)^3),2,4,5,25,x^2-y^2);
arithmetic(0,17,7);  geometric(8,8,5);  harmonic(1,2,3,4);
arithsum(7/2,43/20,11);  geosum(1,-21/10,6);  geosum(1,21/10,6);
geosum(2,1/2,inf);  gaussprob(223/100);  gd(69/200);  agd(%pi/6);
vers(19*%pi/90);  covers(19*%pi/90);  exsec(13*%pi/45);
hav(47*%pi/200);  combination(9,3);  permutation(9,3);