1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
;;; -*- Mode: Lisp; Package: Macsyma -*- ;;;
;;; (c) Copyright 1984 the Regents of the University of California. ;;;
;;; All Rights Reserved. ;;;
;;; This work was produced under the sponsorship of the ;;;
;;; U.S. Department of Energy. The Government retains ;;;
;;; certain rights therein. ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(macsyma-module scifac)
(declaim (special $negdistrib))
(defmacro make-expt (base exponent) ``((mexpt simp) ,,base ,,exponent))
(defmacro acceptable-power (x)
`(and (alike1 (cadr ,x) var)
(setq minpow (cond (nstate (and (integerp expon) (min minpow expon)))
(number (and ($numberp expon)
(integerp (sub minpow expon))
(mfuncall '$min minpow expon)))
(t
(let ((powdif (sub minpow expon)))
(cond ((integerp powdif)
(cond ((> powdif 0) expon)
(t minpow)))
(t
(let ((g ($gcd minpow expon)))
(let ((d1 ($ratsimp (div minpow g)))
(d2 ($ratsimp (div expon g))))
(and (integerp d1)
(integerp d2)
(cond ((> d1 d2) expon)
(t minpow)))))))))))
(or (eq expon-sign
(cond (number (mnegp expon))
((mtimesp expon)
(equal -1 (cadr expon)))))
(return nil))))
(defun factorout-monomial (exp)
(let ((monomials)
(lead-term (cadr exp))
(alone t)
(minuslogic (and (> (length exp) 3)
(let ((minusobj (car (last exp))))
(cond ((integerp minusobj) (minusp minusobj))
((mtimesp minusobj)
(and (integerp (cadr minusobj))
(minusp (cadr minusobj)))))))))
(do ((rem-prod (cond ((or ($mapatom lead-term)
(eq (caar lead-term) 'mexpt))
(ncons lead-term))
((eq (caar lead-term) 'mtimes)
(setq alone nil)
(cdr lead-term))
(t nil))
(cdr rem-prod))
(follow lead-term rem-prod)
(j 1 (1+ j)))
((null rem-prod)
(cond ((null monomials) exp)
(t
(let (($negdistrib))
(muln `(,.monomials ,(addn (cdr exp) nil)) nil)))))
(let ((potentl-mon (car rem-prod)) (truth) (leadfix))
(cond ((or (setq leadfix (integerp potentl-mon)) minuslogic)
(let ((intgcd (cond (leadfix potentl-mon)
(t (prog1 1
(cond (alone
(rplaca (cdr exp) `((mtimes simp) 1 ,potentl-mon))
(setq rem-prod (cdadr exp)
alone nil))
(t (rplacd follow (append (ncons 1) rem-prod))
(setq rem-prod (cdr follow))))))))
(single (list (and leadfix alone))))
(do ((ge (cddr exp) (cdr ge))
(all-minus (minusp intgcd)))
((null ge)
(and (or minuslogic all-minus)
(or (minusp intgcd)
(setq intgcd (- intgcd)))
(setq minuslogic nil))
(or (equal intgcd 1)
(progn
(setq monomials `(,@monomials ,intgcd))
(do ((redu-const (cdr exp) (cdr redu-const))
(in-follow exp redu-const)
(logic single (cdr logic)))
((null redu-const))
(let ((term1 (car redu-const)))
(cond ((car logic) (rplaca redu-const (quotient term1 intgcd)))
(t (cond ((equal 1 (car (rplaca (cdr term1) (quotient (cadr term1) intgcd))))
(and (eq logic single)
(setq j (1- j)
rem-prod follow))
(rplacd term1 (cddr term1))
(or (cddr term1)
(let ((pluscontac (cadr term1)))
(cond ((mplusp pluscontac)
(rplacd in-follow (append (cdr pluscontac) (cdr redu-const)))
(setq redu-const (nthcdr (1- (length pluscontac)) in-follow))
(and (eq logic single)
(let ((new-lead (cadr exp)))
(cond ((mtimesp new-lead)
(setq rem-prod new-lead))
(t (setq alone t
rem-prod `(nil ,new-lead)))))))
(t (rplaca redu-const pluscontac)
(and (eq logic single)
(setq alone t)))))))))))))))
(let ((leadnum (car ge)))
(cond ((integerp leadnum)
(setq single `(,@single t)
intgcd (gcd intgcd leadnum)
all-minus (and all-minus (minusp leadnum))))
((mtimesp leadnum)
(let ((numb (cadr leadnum)))
(cond ((integerp numb)
(setq single `(,@single nil)
intgcd (gcd intgcd numb)
all-minus (and all-minus (minusp numb))))
(minuslogic
(setq single `(,@single nil)
intgcd 1)
(rplacd leadnum (append (ncons 1) (cdr leadnum))))
(t (return nil)))))
(minuslogic
(setq single `(,@single nil)
intgcd 1)
(rplaca ge `((mtimes simp) 1 ,leadnum)))
(t (return nil)))))))
(t (or ($mapatom potentl-mon)
(setq truth (eq (caar potentl-mon) 'mexpt)))
(let ((power (list (cond (truth (caddr potentl-mon))
(t 1))))
(place (list (cond (alone -1)
(t j))))
(var (cond (truth (cadr potentl-mon))
(t potentl-mon))))
(let* ((minpow (car power)) (number ($numberp minpow)))
(do ((ge (cddr exp) (cdr ge))
(expon-sign (and truth
(cond (number (mnegp minpow))
((mtimesp minpow)
(equal -1 (cadr minpow))))))
(nstate (integerp minpow)))
((null ge)
(or number (and expon-sign
(setq minpow (mul -1 minpow))))
(setq monomials
`(,.monomials ,(cond ((equal minpow 1) var)
(t (make-expt (cadr potentl-mon) minpow)))))
(do ((deflate (cdr exp) (cdr deflate))
(d-follow exp deflate)
(pl place (cdr pl))
(pow power (cdr pow)))
((null deflate))
(let ((pownum (car pow)) (plnum (car pl)))
(cond ((minusp plnum)
(cond ((cond (nstate (equal pownum minpow))
(t (alike1 pownum minpow)))
(rplaca deflate 1))
(t (cond ((cond (nstate (equal pownum (1+ minpow)))
(t (alike1 pownum (add 1 minpow))))
(rplaca deflate (cadar deflate)))
(t (rplaca (cddar deflate) (cond (nstate (- pownum minpow))
(t (sub pownum minpow)))))))))
(t (let* ((term (car deflate)) (point (nthcdr plnum term)))
(cond ((cond (nstate (equal pownum minpow))
(t (alike1 pownum minpow)))
(rplacd (nthcdr (1- plnum) term) (cdr point))
(and (eq pl place)
(setq j (1- j)
rem-prod follow))
(or (cddr term)
(let ((pluscontac (cadr term)))
(cond ((mplusp pluscontac)
(rplacd d-follow (append (cdr pluscontac) (cdr deflate)))
(setq deflate (nthcdr (1- (length pluscontac)) d-follow))
(and (eq pl place)
(let ((new-lead (cadr exp)))
(cond ((mtimesp new-lead)
(setq rem-prod new-lead))
(t (setq alone t
rem-prod `(nil ,new-lead)))))))
(t (rplaca deflate pluscontac)
(and (eq pl place)
(setq alone t)))))))
(t (cond ((cond (nstate (equal pownum (1+ minpow)))
(t (alike1 pownum (add 1 minpow))))
(rplaca point (cadar point)))
(t (rplaca (cddar point) (cond (nstate (- pownum minpow))
(t (sub pownum minpow))))))))))))))
(let ((exam-term (car ge)))
(cond (($mapatom exam-term)
(cond ((and nstate (alike1 exam-term var))
(setq place `(,@place -1)
minpow 1
power `(,@power 1)))
(t (return nil))))
((eq (caar exam-term) 'mexpt)
(let ((expon (caddr exam-term)))
(cond ((acceptable-power exam-term)
(setq place `(,@place -2)
power `(,@power ,expon)))
(t (return nil)))))
((eq (caar exam-term) 'mtimes)
(cond ((do ((pick (cdr exam-term) (cdr pick))
(k 1 (1+ k)))
((null pick))
(let ((morcel (car pick)))
(cond (($mapatom morcel)
(cond ((and nstate
(alike1 morcel var))
(setq place `(,@place ,k)
minpow 1
power `(,@power 1))
(return t))))
((eq (caar morcel) 'mexpt)
(let ((expon (caddr morcel)))
(cond ((acceptable-power morcel)
(setq place `(,@place ,k)
power `(,@power ,expon))
(return t)))))
(t (cond ((and nstate
(alike1 morcel var)
(or (not expon-sign)
(return nil)))
(setq place `(,@place ,k)
minpow 1
power `(,@power 1))
(return t))))))))
(t (return nil))))
((and nstate (alike1 exam-term var) (not expon-sign))
(setq place `(,@place -1)
minpow 1
power `(,@power 1)))
(t (return nil)))))))))))))
(defun pair-factor (gel flag)
(cond ((and flag (or ($mapatom gel) (null (cdddr gel)))) gel)
(t (do ((lcl (cdr gel) (cdr lcl))
(backpnt gel lcl))
((null (cdr lcl)) gel)
(let* ((pntr (add (car lcl) (cadr lcl)))
(g (factorout-monomial pntr)))
(or (eq pntr g)
(progn (let ((again (more-subfactors-q g)))
(or (eq again g) (setq g again)))
(rplaca lcl g)
(let ((exp (cddr lcl)))
(rplacd lcl exp)
(and exp
(pair-factor backpnt nil))
(return (cond ((null (cddr gel)) (cadr gel))
(t gel)))))))))))
(defun more-subfactors-q (gg)
(cond ((eq (caar gg) 'mtimes)
(do ((lom (cdr gg) (cdr lom))
(modified)
(back gg lom))
((null lom) (cond (modified (muln (cdr gg) t))
(t gg)))
(let ((obj (car lom)))
(and (mplusp obj)
(let ((pntr (pair-factor obj t)))
(or (eq pntr obj)
(let ((fit (cdr pntr)))
(rplacd back (append fit (cdr lom)))
(setq lom (nthcdr (length fit) back)
modified t))))))))
(t (pair-factor gg t))))
(defun gcfac-prodscan (x)
(do ((inlev (cdr x) (cdr inlev))
(modified)
(backpnt x inlev))
((null inlev) (cond (modified (muln (cdr x) t))
(t x)))
(let* ((possibl-sum (car inlev))
(pntr (monomial-factor possibl-sum)))
(or (eq pntr possibl-sum)
(let ((fit (cdr pntr)))
(rplacd backpnt (append fit (cdr inlev)))
(setq inlev (nthcdr (length fit) backpnt)
modified t))))))
(defun monomial-factor (exp)
(cond (($mapatom exp) exp)
((eq (caar exp) 'mtimes)
(gcfac-prodscan exp))
((eq (caar exp) 'mplus)
(do ((mlm (cdr exp) (cdr mlm)))
((null mlm))
(let ((potenl-prod (car mlm)))
(cond ((mtimesp potenl-prod)
(let ((w (gcfac-prodscan potenl-prod)))
(or (eq w potenl-prod) (rplaca mlm w))))
(t (monomial-factor potenl-prod)))))
(more-subfactors-q (factorout-monomial exp)))
(t (do ((mlm (cdr exp) (cdr mlm)))
((null mlm) exp)
(let* ((obj (car mlm)) (res (monomial-factor obj)))
(or (eq obj res) (rplaca mlm res)))))))
(defun $gcfac (x)
(cond (($mapatom x) x)
(t (monomial-factor (copy-tree ($totaldisrep x))))))
|