1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
***********************************************************************
Some utilities for working with vectors.
Copyright (C) Nov. 2008 Volker van Nek (van dot nek at arcor dot de)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301, USA.
***********************************************************************
vector_rebuild.mac provides to do basic vector calculations in a
readable form. Choose lists or one column matrices to represent vectors.
Loading vector_rebuild.mac sets the option variables listarith,
doallmxops and domxmxops to false. Then addition, scalar multiplication
and non commutative multiplication are not carried out automatically.
These operations need an additional step which is done by vector_simp:
(%i1) load(vector_rebuild)$
(%i2) line: [1,2]+t*[3,4];
(%o2) t [3, 4] + [1, 2]
(%i3) %, vector_simp;
(%o3) [3 t + 1, 4 t + 2]
Such expanded expressions can be reconstructed by vector_rebuild:
(%i4) vector_rebuild(%,[t]);
(%o4) t [3, 4] + [1, 2]
Vector calculations can be directly reconstructed:
(%i5) [1,2]+t*[3,4]+[5,6]+(t/2-1)*[7,8]$
(%i6) vector_rebuild(%,[t]);
13
(%o6) t [--, 8] + [- 1, 0]
2
While working with column vectors it can be useful to pull out the gcd:
(%i7) covect([1/2,1/3,1/4])$
(%i8) %, vector_factor;
[ 6 ]
1 [ ]
(%o8) -- [ 4 ]
12 [ ]
[ 3 ]
The option variable vector_factor_minus controls whether a common
minus sign is also pulled out (true) or not (false=default):
(%i9) vector_factor([-2,-4]), vector_factor_minus:true;
(%o9) - 2 [1, 2]
The function extract_equations extracts the system of equations from
a vector equation:
(%i10) veq: line = [4,3]+s*[2,1];
(%o10) t [3, 4] + [1, 2] = s [2, 1] + [4, 3]
(%i11) sys: extract_equations(veq);
(%o11) [3 t + 1 = 2 s + 4, 4 t + 2 = s + 3]
This system can now be solved by e.g. algsys.
The calculation of a cross product and the vector length is carried
out immediately:
(%i12) [1,0,0]~[0,1,0];
(%o12) [0, 0, 1]
(%i13) (v:covect([1,2]), 1/|v|*v);
1 [ 1 ]
(%o13) ------- [ ]
sqrt(5) [ 2 ]
***********************************************************************
vector_rebuild.mac is in a very experimental state of development.
Be warned: It is not compatible with vect.mac.
***********************************************************************
Example: Calculating common points of two planes (e.g. identical planes)
(%i1) load(vector_rebuild)$
(%i2) v([args]):= covect(args)$
(%i3) plane1: v(1,2,3)+p*v(4,5,6)+q*v(7,8,9);
[ 7 ] [ 4 ] [ 1 ]
[ ] [ ] [ ]
(%o3) q [ 8 ] + p [ 5 ] + [ 2 ]
[ ] [ ] [ ]
[ 9 ] [ 6 ] [ 3 ]
(%i4) plane2: v(3,2,1)+r*v(6,5,4)+s*v(9,8,7)$
(%i5) veq: plane1 = plane2;
[ 7 ] [ 4 ] [ 1 ] [ 9 ] [ 6 ] [ 3 ]
[ ] [ ] [ ] [ ] [ ] [ ]
(%o5) q [ 8 ] + p [ 5 ] + [ 2 ] = s [ 8 ] + r [ 5 ] + [ 2 ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ 9 ] [ 6 ] [ 3 ] [ 7 ] [ 4 ] [ 1 ]
(%i6) map(disp, sys: extract_equations(veq))$
7 q + 4 p + 1 = 9 s + 6 r + 3
8 q + 5 p + 2 = 8 s + 5 r + 2
9 q + 6 p + 3 = 7 s + 4 r + 1
(%i7) params: algsys(sys,[p,q,r,s]);
16 %r2 + 13 %r1 + 16
(%o7) [[p = %r1, q = %r2, r = - --------------------,
3
13 %r2 + 10 %r1 + 10
s = --------------------]]
3
(%i8) params: %, %r1=u, %r2=v;
16 v + 13 u + 16 13 v + 10 u + 10
(%o8) [[p = u, q = v, r = - ----------------, s = ----------------]]
3 3
(%i9) subst(params,plane1);
[ 7 ] [ 4 ] [ 1 ]
[ ] [ ] [ ]
(%o9) v [ 8 ] + u [ 5 ] + [ 2 ]
[ ] [ ] [ ]
[ 9 ] [ 6 ] [ 3 ]
(%i10) subst(params,plane2);
[ 6 ] [ 9 ] [ 3 ]
16 v + 13 u + 16 [ ] 13 v + 10 u + 10 [ ] [ ]
(%o10) (- ----------------) [ 5 ] + ---------------- [ 8 ] + [ 2 ]
3 [ ] 3 [ ] [ ]
[ 4 ] [ 7 ] [ 1 ]
(%i11) vector_rebuild(%,[u,v]);
[ 7 ] [ 4 ] [ 1 ]
[ ] [ ] [ ]
(%o11) v [ 8 ] + u [ 5 ] + [ 2 ]
[ ] [ ] [ ]
[ 9 ] [ 6 ] [ 3 ]
***********************************************************************
Some more examples:
(%i1) load(vector_rebuild)$
(%i2) n: [1,2,3]$
(%i3) a: [2,0,1]$
(%i4) plane: x.n = a.n;
(%o4) x . [1, 2, 3] = [2, 0, 1] . [1, 2, 3]
(%i5) %, vector_simp;
(%o5) x . [1, 2, 3] = 5
(%i6) %, x=[x1,x2,x3], vector_simp;
(%o6) 3 x3 + 2 x2 + x1 = 5
***********************************************************************
(%i1) load(vector_rebuild)$
(%i2) v([args]):= covect(args)$
(%i3) n: v(1,2,3)$
(%i4) en: 1/|n|*n;
[ 1 ]
1 [ ]
(%o4) -------- [ 2 ]
sqrt(14) [ ]
[ 3 ]
(%i5) a: v(2,0,1)$
(%i6) plane: x.n = a.n;
[ 1 ] [ 2 ] [ 1 ]
[ ] [ ] [ ]
(%o6) x . [ 2 ] = [ 0 ] . [ 2 ]
[ ] [ ] [ ]
[ 3 ] [ 1 ] [ 3 ]
(%i7) %, vector_simp;
[ 1 ]
[ ]
(%o7) x . [ 2 ] = 5
[ ]
[ 3 ]
(%i8) %, x=v(x1,x2,x3), vector_simp;
(%o8) 3 x3 + 2 x2 + x1 = 5
(%i9) point: v(0,1,2)$
(%i10) plane, x=point, vector_simp;
(%o10) 8 = 5
(%i11) distance: |(point-a)*en|;
sqrt(17)
(%o11) --------
sqrt(14)
(%i12) line: a+t*en;
[ 1 ] [ 2 ]
t [ ] [ ]
(%o12) -------- [ 2 ] + [ 0 ]
sqrt(14) [ ] [ ]
[ 3 ] [ 1 ]
(%i13) vector_simp(%);
[ t ]
[ -------- + 2 ]
[ sqrt(14) ]
[ ]
[ 2 t ]
(%o13) [ -------- ]
[ sqrt(14) ]
[ ]
[ 3 t ]
[ -------- + 1 ]
[ sqrt(14) ]
(%i14) vector_rebuild(%,[t]), vector_factor;
[ 1 ] [ 2 ]
t [ ] [ ]
(%o14) -------- [ 2 ] + [ 0 ]
sqrt(14) [ ] [ ]
[ 3 ] [ 1 ]
(%i15) vector_factor(v(-2,-4));
[ - 1 ]
(%o15) 2 [ ]
[ - 2 ]
(%i16) vector_factor(v(-2,-4)), vector_factor_minus:true;
[ 1 ]
(%o16) - 2 [ ]
[ 2 ]
***********************************************************************
Factoring matrices:
(%i1) load(vector_rebuild)$
(%i2) M: matrix([1,2],[3,-1]);
[ 1 2 ]
(%o2) [ ]
[ 3 - 1 ]
(%i3) M_1: M^^-1, vector_factor;
1 [ 1 2 ]
(%o3) - [ ]
7 [ 3 - 1 ]
(%i5) M.M_1, vector_simp;
[ 1 0 ]
(%o5) [ ]
[ 0 1 ]
***********************************************************************
|