1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
(in-package :maxima)
(defun maxima-matrix-dims (a)
(let ((row (second a)))
;; Should we check that all rows have the same length?
(values (length (cdr a)) (length (cdr row)))))
(defun complex-maxima-matrix-p (a)
(dolist (row (cdr a))
(dolist (col (cdr row))
(unless (eql ($imagpart col) 0)
(return-from complex-maxima-matrix-p t))))
nil)
(defun lapack-lispify-matrix (a nrow ncol &optional (assume-complex-maxima-matrix-p nil))
"Convert a Maxima matrix A of dimension NROW and NCOL to Lisp matrix
suitable for use with LAPACK"
(setq a ($float a))
(let* ((array-type (if (or assume-complex-maxima-matrix-p (complex-maxima-matrix-p a))
'(complex flonum)
'flonum))
(mat (make-array (* nrow ncol)
:element-type array-type))
(mat-2d (make-array (list ncol nrow)
:element-type array-type
:displaced-to mat))
(r 0))
(dolist (row (cdr a))
(let ((c 0))
(dolist (col (cdr row))
;; Fortran matrices are in column-major order!
(setf (aref mat-2d c r) (if (eql array-type 'flonum)
(coerce col 'flonum)
(coerce (complex ($realpart col) ($imagpart col))
'(complex flonum))
))
(incf c)))
(incf r))
mat))
(defun lapack-maxify-matrix (nrow ncol a)
"Convert an LAPACK matrix of dimensions NROW and NCOL into a Maxima
matrix (list of lists)"
(let ((2d (make-array (list ncol nrow) :element-type (array-element-type a)
:displaced-to a)))
(let (res)
(dotimes (r nrow)
(let (row)
(dotimes (c ncol)
;; Fortran arrays are column-major order!
(let ((v (aref 2d c r)))
(push (add (realpart v) (mul '$%i (imagpart v))) row)))
(push `((mlist) ,@(nreverse row)) res)))
`(($matrix) ,@(nreverse res)))))
(defun $dgeev (a &optional right-vec-p left-vec-p)
"
DGEEV computes for an N-by-N real nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
A list of three items is returned. The first item is a list of the
eigenvectors. The second item is false or the matrix of right
eigenvectors. The last itme is false or the matrix of left
eigenvectors."
(flet ((make-eigval (wr wi)
`((mlist) ,@(map 'list #'(lambda (r i)
(add r (mul '$%i i)))
wr wi)))
(make-eigvec (n vr wi)
;; dgeev stores the eigen vectors in a special way. Undo
;; that. For simplicity, we create a 2-D matrix and store
;; the eigenvectors there. Then we convert that matrix
;; into a form that maxima wants. Somewhat inefficient.
(let ((evec (make-array (list n n))))
(do ((col 0 (incf col))
(posn 0))
((>= col n))
(cond ((zerop (aref wi col))
(dotimes (row n)
(setf (aref evec row col) (aref vr posn))
(incf posn)))
(t
(dotimes (row n)
(let* ((next-posn (+ posn n))
(val+ (add (aref vr posn)
(mul '$%i (aref vr next-posn))))
(val- (sub (aref vr posn)
(mul '$%i (aref vr next-posn)))))
(setf (aref evec row col) val+)
(setf (aref evec row (1+ col)) val-)
(incf posn)))
;; Skip over the next column, which we've already used
(incf col)
(incf posn n))))
;; Now convert this 2-D Lisp matrix into a maxima matrix
(let (res)
(dotimes (r n)
(let (row)
(dotimes (c n)
(push (aref evec r c) row))
(push `((mlist) ,@(nreverse row)) res)))
`(($matrix) ,@(nreverse res)))
)))
(let* ((n (maxima-matrix-dims a))
(a-mat (lapack-lispify-matrix a n n))
(wr (make-array n :element-type 'flonum))
(wi (make-array n :element-type 'flonum))
(vl (make-array (if left-vec-p (* n n) 0)
:element-type 'flonum))
(vr (make-array (if right-vec-p (* n n) 0)
:element-type 'flonum)))
;; XXX: FIXME: We need to do more error checking in the calls to
;; dgeev!
(multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info)
;; Figure out how much space we need in the work array.
(lapack:dgeev (if left-vec-p "V" "N")
(if right-vec-p "V" "N")
n a-mat n wr wi vl n vr n wr -1 0)
(declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info))
(let* ((opt-lwork (truncate (aref wr 0)))
(work (make-array opt-lwork :element-type 'flonum)))
;; Now do the work with the optimum size of the work space.
(multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info)
(lapack:dgeev (if left-vec-p "V" "N")
(if right-vec-p "V" "N")
n a-mat n wr wi vl n vr n work opt-lwork 0)
(declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork))
(cond ((< info 0)
(merror "DGEEV: invalid arguments: ~D" info))
((> info 0)
(merror "DGEEV: failed to converge: ~D" info)))
;; Convert wr+%i*wi to maxima form
#+nil
(progn
(format t "info = ~A~%" info)
(format t "lwork = ~A~%" (aref work 0))
(format t "vr = ~A~%" vr))
(let ((e-val (make-eigval wr wi))
(e-vec-right (if right-vec-p
(make-eigvec n vr wi)
nil))
(e-vec-left (if left-vec-p
(make-eigvec n vl wi)
nil)))
`((mlist) ,e-val ,e-vec-right ,e-vec-left))))))))
(defun $dgesvd (a &optional jobu jobvt)
"
DGESVD computes the singular value decomposition (SVD) of a real
M-by-N matrix A, optionally computing the left and/or right singular
vectors. The SVD is written
A = U * SIGMA * transpose(V)
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
Note that the routine returns V**T, not V.
A list of three items is returned. The first is a list containing the
non-zero elements of SIGMA. If jobu is not false, The second element
is the matrix U. Otherwise it is false. Similarly, the third element
is V**T or false, depending on jobvt."
(flet ((maxify-vector (v)
`((mlist) ,@(coerce v 'list)))
(fixup-jobu (arg)
(if arg "All columns of U" "No columns of U"))
(fixup-jobvt (arg)
(if arg "All columns of V^T" "No columns of V^T")))
(multiple-value-bind (nrow ncol)
(maxima-matrix-dims a)
(let* ((a-mat (lapack-lispify-matrix a nrow ncol))
(s (make-array (min nrow ncol) :element-type 'flonum))
(u (make-array (* nrow nrow) :element-type 'flonum))
(u1 (make-array (list nrow nrow) :element-type 'flonum
:displaced-to u))
(vt (make-array (* ncol ncol)
:element-type 'flonum))
(vt1 (make-array (list ncol ncol) :element-type 'flonum
:displaced-to vt))
(wr (make-array 1 :element-type 'flonum)))
;; XXX: FIXME: We need to do more error checking in the calls to
;; dgesvd!
(multiple-value-bind (z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
z-vt z-ldvt z-work z-lwork info)
;; Figure out the optimum size for the work array
(lapack::dgesvd (fixup-jobu jobu)
(fixup-jobvt jobvt)
nrow ncol a-mat nrow
s u nrow
vt ncol
wr -1
0)
(declare (ignore z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
z-vt z-ldvt z-work z-lwork info))
(let* ((opt-lwork (truncate (aref wr 0)))
(work (make-array opt-lwork :element-type 'flonum)))
;; Allocate the optimum work array and do the requested
;; computation.
(multiple-value-bind (z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u
z-ldu z-vt z-ldvt z-work z-lwork info)
(lapack::dgesvd (fixup-jobu jobu)
(fixup-jobvt jobvt)
nrow ncol a-mat nrow
s u nrow
vt ncol
work opt-lwork
0)
(declare (ignore z-jobu z-jobvt z-m z-n z-a z-lda z-s z-u z-ldu
z-vt z-ldvt z-work z-lwork))
(cond ((< info 0)
(merror "DGESVD: invalid arguments: ~D" info))
((> info 0)
(merror "DGESVD: failed to converge: ~D" info)))
(let ((u-max (if jobu
(lapack-maxify-matrix nrow nrow u1)
nil))
(vt-max (if jobvt
(lapack-maxify-matrix ncol ncol vt1)
nil))
(s-max (maxify-vector s)))
`((mlist) ,s-max ,u-max ,vt-max)))))))))
(defun $dlange (norm a)
"
DLANGE returns the value
DLANGE = ( max(abs(A(i,j))), NORM = '$max
(
( norm1(A), NORM = '$one_norm
(
( normI(A), NORM = '$inf_norm
(
( normF(A), NORM = '$frobenius
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm."
;; Norm should be '$max, '$one_norm, '$inf_norm, '$frobenius
(multiple-value-bind (nrows ncols)
(maxima-matrix-dims a)
(let* ((a-mat (lapack-lispify-matrix a nrows ncols))
(norm-type (ecase norm
($max "M")
($one_norm "O")
($inf_norm "I")
($frobenius "F")))
(work (make-array (if (equal norm-type "I") nrows 0)
:element-type 'flonum)))
(lapack::dlange norm-type nrows ncols a-mat nrows work))))
(defun $zlange (norm a)
"
DLANGE returns the value
DLANGE = ( max(abs(A(i,j))), NORM = '$max
(
( norm1(A), NORM = '$one_norm
(
( normI(A), NORM = '$inf_norm
(
( normF(A), NORM = '$frobenius
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm."
;; Norm should be '$max, '$one_norm, '$inf_norm, '$frobenius
(multiple-value-bind (nrows ncols)
(maxima-matrix-dims a)
(let* ((a-mat (lapack-lispify-matrix a nrows ncols))
(norm-type (ecase norm
($max "M")
($one_norm "O")
($inf_norm "I")
($frobenius "F")))
(work (make-array (if (equal norm-type "I") nrows 0)
:element-type 'flonum)))
(lapack::zlange norm-type nrows ncols a-mat nrows work))))
(defun $zgeev (a &optional right-vec-p left-vec-p)
"
ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
eigenvalues and, optionally, the left and/or right eigenvectors.
The right eigenvector v(j) of A satisfies
A * v(j) = lambda(j) * v(j)
where lambda(j) is its eigenvalue.
The left eigenvector u(j) of A satisfies
u(j)**H * A = lambda(j) * u(j)**H
where u(j)**H denotes the conjugate transpose of u(j).
The computed eigenvectors are normalized to have Euclidean norm
equal to 1 and largest component real.
A list of three items is returned. The first item is a list of the
eigenvectors. The second item is false or the matrix of right
eigenvectors. The last itme is false or the matrix of left
eigenvectors."
(flet ((make-eigval (w)
`((mlist) ,@(map 'list #'(lambda (z)
(add (realpart z) (mul '$%i (imagpart z))))
w))))
(let* ((n (maxima-matrix-dims a))
(a-mat (lapack-lispify-matrix a n n t))
(w (make-array n :element-type '(complex flonum)))
(vl (make-array (if left-vec-p (* n n) 0)
:element-type '(complex flonum)))
(vr (make-array (if right-vec-p (* n n) 0)
:element-type '(complex flonum)))
(rwork (make-array 1 :element-type 'flonum)))
;; XXX: FIXME: We need to do more error checking in the calls to
;; zgeev!
(multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info)
;; Figure out how much space we need in the work array.
(lapack:zgeev (if left-vec-p "V" "N")
(if right-vec-p "V" "N")
n a-mat n w vl n vr n w -1 rwork 0)
(declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info))
(let* ((opt-lwork (truncate (realpart (aref w 0))))
(work (make-array opt-lwork :element-type '(complex flonum)))
(rwork (make-array opt-lwork :element-type 'flonum)))
;; Now do the work with the optimum size of the work space.
(multiple-value-bind (z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork info)
(lapack:zgeev (if left-vec-p "V" "N")
(if right-vec-p "V" "N")
n a-mat n w vl n vr n work opt-lwork rwork 0)
(declare (ignore z-jobvl z-jobvr z-n z-a z-lda z-wr z-wi z-vl
z-ldvl z-vr z-ldvr z-work z-lwork))
(cond ((< info 0)
(merror "ZGEEV: invalid arguments: ~D" info))
((> info 0)
(merror "ZGEEV: failed to converge: ~D" info)))
(let ((e-val (make-eigval w))
(e-vec-right (if right-vec-p
(lapack-maxify-matrix n n vr)
nil))
(e-vec-left (if left-vec-p
(lapack-maxify-matrix n n vl)
nil)))
`((mlist) ,e-val ,e-vec-right ,e-vec-left))))))))
(defun $zheev (a &optional eigen-vector-p)
(flet ((make-eigval (w)
`((mlist) ,@(map 'list #'(lambda (z)
(add (realpart z) (mul '$%i (imagpart z))))
w))))
(let* ((n (maxima-matrix-dims a))
(a-mat (lapack-lispify-matrix a n n t))
(w (make-array n :element-type 'flonum))
(work (make-array 1 :element-type '(complex flonum)))
(rwork (make-array (max 1 (- (* 3 n) 2))
:element-type 'flonum)))
;; XXX: FIXME: We need to do more error checking in the calls to
;; zgeev!
(multiple-value-bind (z-jobz z-uplo z-n z-a z-lda z-w z-work
z-lwork z-rwork info)
;; Figure out how much space we need in the work array.
(lapack:zheev (if eigen-vector-p "V" "N")
"U"
n
a-mat
n
w
work
-1
rwork
0)
(declare (ignore z-jobz z-uplo z-n z-a z-lda z-w z-work
z-lwork z-rwork))
(let* ((opt-lwork (truncate (realpart (aref work 0))))
(work (make-array opt-lwork :element-type '(complex flonum))))
;; Now do the work with the optimum size of the work space.
(multiple-value-bind (z-jobz z-uplo z-n z-a z-lda z-w z-work
z-lwork z-rwork info)
(lapack:zheev (if eigen-vector-p "V" "N")
"U"
n
a-mat
n
w
work
opt-lwork
rwork
0)
(declare (ignore z-jobz z-uplo z-n z-a z-lda z-w z-work
z-lwork z-rwork))
(cond ((< info 0)
(merror "ZHEEV: invalid arguments: ~D" info))
((> info 0)
(merror "ZHEEV: failed to converge: ~D" info)))
(let ((e-val (make-eigval w))
(e-vec (if eigen-vector-p
(lapack-maxify-matrix n n a-mat)
nil)))
`((mlist) ,e-val ,e-vec))))))))
|