1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
@menu
* Introduction to atensor::
* Functions and Variables for atensor::
@end menu
@node Introduction to atensor, Functions and Variables for atensor, atensor, atensor
@section Introduction to atensor
@code{atensor} is an algebraic tensor manipulation package. To use @code{atensor},
type @code{load("atensor")}, followed by a call to the @code{init_atensor}
function.
The essence of @code{atensor} is a set of simplification rules for the
noncommutative (dot) product operator ("@code{.}"). @code{atensor} recognizes
several algebra types; the corresponding simplification rules are put
into effect when the @code{init_atensor} function is called.
The capabilities of @code{atensor} can be demonstrated by defining the
algebra of quaternions as a Clifford-algebra Cl(0,2) with two basis
vectors. The three quaternionic imaginary units are then the two
basis vectors and their product, i.e.:
@example
i = v j = v k = v . v
1 2 1 2
@end example
Although the @code{atensor} package has a built-in definition for the
quaternion algebra, it is not used in this example, in which we
endeavour to build the quaternion multiplication table as a matrix:
@c ===beg===
@c load("atensor");
@c init_atensor(clifford,0,0,2);
@c atensimp(v[1].v[1]);
@c atensimp((v[1].v[2]).(v[1].v[2]));
@c q:zeromatrix(4,4);
@c q[1,1]:1;
@c for i thru adim do q[1,i+1]:q[i+1,1]:v[i];
@c q[1,4]:q[4,1]:v[1].v[2];
@c for i from 2 thru 4 do for j from 2 thru 4 do
@c q[i,j]:atensimp(q[i,1].q[1,j]);
@c q;
@c ===end===
@example
(%i1) load("atensor");
(%o1) /share/tensor/atensor.mac
(%i2) init_atensor(clifford,0,0,2);
(%o2) done
(%i3) atensimp(v[1].v[1]);
(%o3) - 1
(%i4) atensimp((v[1].v[2]).(v[1].v[2]));
(%o4) - 1
(%i5) q:zeromatrix(4,4);
[ 0 0 0 0 ]
[ ]
[ 0 0 0 0 ]
(%o5) [ ]
[ 0 0 0 0 ]
[ ]
[ 0 0 0 0 ]
(%i6) q[1,1]:1;
(%o6) 1
(%i7) for i thru adim do q[1,i+1]:q[i+1,1]:v[i];
(%o7) done
(%i8) q[1,4]:q[4,1]:v[1].v[2];
(%o8) v . v
1 2
(%i9) for i from 2 thru 4 do for j from 2 thru 4 do
q[i,j]:atensimp(q[i,1].q[1,j]);
(%o9) done
(%i10) q;
@group
[ 1 v v v . v ]
[ 1 2 1 2 ]
[ ]
[ v - 1 v . v - v ]
[ 1 1 2 2 ]
(%o10) [ ]
[ v - v . v - 1 v ]
[ 2 1 2 1 ]
[ ]
[ v . v v - v - 1 ]
[ 1 2 2 1 ]
@end group
@end example
@code{atensor} recognizes as base vectors indexed symbols, where the symbol
is that stored in @code{asymbol} and the index runs between 1 and @code{adim}.
For indexed symbols, and indexed symbols only, the bilinear forms
@code{sf}, @code{af}, and @code{av} are evaluated. The evaluation
substitutes the value of @code{aform[i,j]} in place of @code{fun(v[i],v[j])}
where @code{v} represents the value of @code{asymbol} and @code{fun} is
either @code{af} or @code{sf}; or, it substitutes @code{v[aform[i,j]]}
in place of @code{av(v[i],v[j])}.
Needless to say, the functions @code{sf}, @code{af} and @code{av}
can be redefined.
When the @code{atensor} package is loaded, the following flags are set:
@example
dotscrules:true;
dotdistrib:true;
dotexptsimp:false;
@end example
If you wish to experiment with a nonassociative algebra, you may also
consider setting @code{dotassoc} to @code{false}. In this case, however,
@code{atensimp} will not always be able to obtain the desired
simplifications.
@opencatbox{Categories:}
@category{Tensors}
@category{Share packages}
@category{Package atensor}
@closecatbox
@c end concepts atensor
@node Functions and Variables for atensor, , Introduction to atensor, atensor
@section Functions and Variables for atensor
@anchor{init_atensor}
@deffn {Function} init_atensor @
@fname{init_atensor} (@var{alg_type}, @var{opt_dims}) @
@fname{init_atensor} (@var{alg_type})
Initializes the @code{atensor} package with the specified algebra type. @var{alg_type}
can be one of the following:
@code{universal}: The universal algebra has no commutation rules.
@code{grassmann}: The Grassman algebra is defined by the commutation
relation @code{u.v+v.u=0}.
@code{clifford}: The Clifford algebra is defined by the commutation
relation @code{u.v+v.u=-2*sf(u,v)} where @code{sf} is a symmetric
scalar-valued function. For this algebra, @var{opt_dims} can be up
to three nonnegative integers, representing the number of positive,
degenerate, and negative dimensions of the algebra, respectively. If
any @var{opt_dims} values are supplied, @code{atensor} will configure the
values of @code{adim} and @code{aform} appropriately. Otherwise,
@code{adim} will default to 0 and @code{aform} will not be defined.
@code{symmetric}: The symmetric algebra is defined by the commutation
relation @code{u.v-v.u=0}.
@code{symplectic}: The symplectic algebra is defined by the commutation
relation @code{u.v-v.u=2*af(u,v)} where @code{af} is an antisymmetric
scalar-valued function. For the symplectic algebra, @var{opt_dims} can
be up to two nonnegative integers, representing the nondegenerate and
degenerate dimensions, respectively. If any @var{opt_dims} values are
supplied, @code{atensor} will configure the values of @code{adim} and @code{aform}
appropriately. Otherwise, @code{adim} will default to 0 and @code{aform}
will not be defined.
@code{lie_envelop}: The algebra of the Lie envelope is defined by the
commutation relation @code{u.v-v.u=2*av(u,v)} where @code{av} is
an antisymmetric function.
The @code{init_atensor} function also recognizes several predefined
algebra types:
@code{complex} implements the algebra of complex numbers as the
Clifford algebra Cl(0,1). The call @code{init_atensor(complex)} is
equivalent to @code{init_atensor(clifford,0,0,1)}.
@code{quaternion} implements the algebra of quaternions. The call
@code{init_atensor (quaternion)} is equivalent to
@code{init_atensor (clifford,0,0,2)}.
@code{pauli} implements the algebra of Pauli-spinors as the Clifford-algebra
Cl(3,0). A call to @code{init_atensor(pauli)} is equivalent to
@code{init_atensor(clifford,3)}.
@code{dirac} implements the algebra of Dirac-spinors as the Clifford-algebra
Cl(3,1). A call to @code{init_atensor(dirac)} is equivalent to
@code{init_atensor(clifford,3,0,1)}.
@opencatbox{Categories:}
@category{Package atensor}
@closecatbox
@end deffn
@anchor{atensimp}
@deffn {Function} atensimp (@var{expr})
Simplifies an algebraic tensor expression @var{expr} according to the rules
configured by a call to @code{init_atensor}. Simplification includes
recursive application of commutation relations and resolving calls
to @code{sf}, @code{af}, and @code{av} where applicable. A
safeguard is used to ensure that the function always terminates, even
for complex expressions.
@opencatbox{Categories:}
@category{Package atensor}
@category{Simplification functions}
@closecatbox
@end deffn
@anchor{alg_type}
@deffn {Function} alg_type
The algebra type. Valid values are @code{universal}, @code{grassmann},
@code{clifford}, @code{symmetric}, @code{symplectic} and @code{lie_envelop}.
@opencatbox{Categories:}
@category{Package atensor}
@closecatbox
@end deffn
@anchor{adim}
@defvr {Variable} adim
Default value: 0
The dimensionality of the algebra. @code{atensor} uses the value of @code{adim}
to determine if an indexed object is a valid base vector. See @code{abasep}.
@opencatbox{Categories:}
@category{Package atensor}
@category{Global variables}
@closecatbox
@end defvr
@anchor{aform}
@defvr {Variable} aform
Default value: @code{ident(3)}
Default values for the bilinear forms @code{sf}, @code{af}, and
@code{av}. The default is the identity matrix @code{ident(3)}.
@opencatbox{Categories:}
@category{Package atensor}
@category{Global variables}
@closecatbox
@end defvr
@anchor{asymbol}
@defvr {Variable} asymbol
Default value: @code{v}
The symbol for base vectors.
@opencatbox{Categories:}
@category{Package atensor}
@category{Global variables}
@closecatbox
@end defvr
@anchor{sf}
@deffn {Function} sf (@var{u}, @var{v})
A symmetric scalar function that is used in commutation relations.
The default implementation checks if both arguments are base vectors
using @code{abasep} and if that is the case, substitutes the
corresponding value from the matrix @code{aform}.
@opencatbox{Categories:}
@category{Package atensor}
@closecatbox
@end deffn
@anchor{af}
@deffn {Function} af (@var{u}, @var{v})
An antisymmetric scalar function that is used in commutation relations.
The default implementation checks if both arguments are base vectors
using @code{abasep} and if that is the case, substitutes the
corresponding value from the matrix @code{aform}.
@opencatbox{Categories:}
@category{Package atensor}
@closecatbox
@end deffn
@anchor{av}
@deffn {Function} av (@var{u}, @var{v})
An antisymmetric function that is used in commutation relations.
The default implementation checks if both arguments are base vectors
using @code{abasep} and if that is the case, substitutes the
corresponding value from the matrix @code{aform}.
For instance:
@c ===beg===
@c load("atensor");
@c adim:3;
@c aform:matrix([0,3,-2],[-3,0,1],[2,-1,0]);
@c asymbol:x;
@c av(x[1],x[2]);
@c ===end===
@example
(%i1) load("atensor");
(%o1) /share/tensor/atensor.mac
(%i2) adim:3;
(%o2) 3
(%i3) aform:matrix([0,3,-2],[-3,0,1],[2,-1,0]);
[ 0 3 - 2 ]
[ ]
(%o3) [ - 3 0 1 ]
[ ]
[ 2 - 1 0 ]
(%i4) asymbol:x;
(%o4) x
(%i5) av(x[1],x[2]);
(%o5) x
3
@end example
@opencatbox{Categories:}
@category{Package atensor}
@closecatbox
@end deffn
@anchor{abasep}
@deffn {Function} abasep (@var{v})
Checks if its argument is an @code{atensor} base vector. That is, if it is
an indexed symbol, with the symbol being the same as the value of
@code{asymbol}, and the index having a numeric value between 1
and @code{adim}.
@opencatbox{Categories:}
@category{Package atensor}
@category{Predicate functions}
@closecatbox
@end deffn
|