File: Function.texi

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (3110 lines) | stat: -rw-r--r-- 98,107 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
@menu
* Introduction to Function Definition::  
* Function::                    
* Macros::                      
* Functions and Variables for Function Definition::  
@end menu

@c -----------------------------------------------------------------------------
@node Introduction to Function Definition, Function, Function Definition, Function Definition
@section Introduction to Function Definition
@c -----------------------------------------------------------------------------

@c -----------------------------------------------------------------------------
@node Function, Macros, Introduction to Function Definition, Function Definition
@c NEEDS WORK, THIS TOPIC IS IMPORTANT
@c MENTION DYNAMIC SCOPE (VS LEXICAL SCOPE)
@section Function
@c -----------------------------------------------------------------------------

@opencatbox{Categories:}
@category{Function definition}
@category{Programming}
@closecatbox

@c -----------------------------------------------------------------------------
@subsection Ordinary functions
@c -----------------------------------------------------------------------------

To define a function in Maxima you use the @code{:=} operator.
E.g.

@example
f(x) := sin(x)
@end example

@noindent
defines a function @code{f}.
Anonymous functions may also be created using @code{lambda}.
For example

@example
lambda ([i, j], ...)
@end example

@noindent
can be used instead of @code{f}
where

@example
f(i,j) := block ([], ...);
map (lambda ([i], i+1), l)
@end example

@noindent
would return a list with 1 added to each term.

You may also define a function with a variable number of arguments,
by having a final argument which is assigned to a list of the extra
arguments:

@c ===beg===
@c f ([u]) := u;
@c f (1, 2, 3, 4);
@c f (a, b, [u]) := [a, b, u];
@c f (1, 2, 3, 4, 5, 6);
@c ===end===
@example
(%i1) f ([u]) := u;
(%o1)                      f([u]) := u
(%i2) f (1, 2, 3, 4);
(%o2)                     [1, 2, 3, 4]
(%i3) f (a, b, [u]) := [a, b, u];
(%o3)               f(a, b, [u]) := [a, b, u]
(%i4) f (1, 2, 3, 4, 5, 6);
(%o4)                 [1, 2, [3, 4, 5, 6]]
@end example

The right hand side of a function is an expression.  Thus
if you want a sequence of expressions, you do

@example
f(x) := (expr1, expr2, ...., exprn);
@end example

and the value of @var{exprn} is what is returned by the function.

If you wish to make a @code{return} from some expression inside the
function then you must use @code{block} and @code{return}.

@example
block ([], expr1, ..., if (a > 10) then return(a), ..., exprn)
@end example

is itself an expression, and so could take the place of the
right hand side of a function definition.  Here it may happen
that the return happens earlier than the last expression.

@c COPY THIS STUFF TO @defun block AS NEEDED
@c ESPECIALLY STUFF ABOUT LOCAL VARIABLES
The first @code{[]} in the block, may contain a list of variables and
variable assignments, such as @code{[a: 3, b, c: []]}, which would cause the
three variables @code{a},@code{b},and @code{c} to not refer to their
global values, but rather have these special values for as long as the
code executes inside the @code{block}, or inside functions called from
inside the @code{block}.  This is called @i{dynamic} binding, since the
variables last from the start of the block to the time it exits.  Once
you return from the @code{block}, or throw out of it, the old values (if
any) of the variables will be restored.  It is certainly a good idea
to protect your variables in this way.  Note that the assignments
in the block variables, are done in parallel.  This means, that if
you had used @code{c: a} in the above, the value of @code{c} would
have been the value of @code{a} at the time you just entered the block,
but before @code{a} was bound.  Thus doing something like

@example
block ([a: a], expr1, ... a: a+3, ..., exprn)
@end example

will protect the external value of @code{a} from being altered, but
would let you access what that value was.  Thus the right hand
side of the assignments, is evaluated in the entering context, before
any binding occurs.
Using just @code{block ([x], ...)} would cause the @code{x} to have itself
as value, just as if it would have if you entered a fresh Maxima
session.

The actual arguments to a function are treated in exactly same way as
the variables in a block.  Thus in

@example
f(x) := (expr1, ..., exprn);
@end example

and

@example
f(1);
@end example

we would have a similar context for evaluation of the expressions
as if we had done

@example
block ([x: 1], expr1, ..., exprn)
@end example

Inside functions, when the right hand side of a definition,
may be computed at runtime, it is useful to use @code{define} and
possibly @code{buildq}.

@anchor{memoizing function}
@anchor{memoizing functions}
@anchor{Memoizing function}
@anchor{Memoizing functions}
@c -----------------------------------------------------------------------------
@subsection Memoizing Functions
@c -----------------------------------------------------------------------------

A @i{memoizing function} caches the result the first time it is called with a
given argument, and returns the stored value, without recomputing it, when that
same argument is given.  Memoizing functions are often called
@i{array function} and are in fact handled like arrays in many ways:

The names of memoizing functions are appended to the global list @code{arrays}
(not the global list @code{functions}).  @code{arrayinfo} returns the list of
arguments for which there are stored values, and @code{listarray} returns the
stored values.  @code{dispfun} and @code{fundef} return the array function
definition.

@code{arraymake} constructs an array function call,
analogous to @code{funmake} for ordinary functions.
@code{arrayapply} applies an array function to its arguments,
analogous to @code{apply} for ordinary functions.
There is nothing exactly analogous to @code{map} for array functions,
although @code{map(lambda([@var{x}], @var{a}[@var{x}]), @var{L})} or
@code{makelist(@var{a}[@var{x}], @var{x}, @var{L})}, where @var{L} is a list,
are not too far off the mark.

@code{remarray} removes an array function definition (including any stored
function values), analogous to @code{remfunction} for ordinary functions.

@code{kill(@var{a}[@var{x}])} removes the value of the array function @var{a}
stored for the argument @var{x};
the next time @var{a} is called with argument @var{x},
the function value is recomputed.
However, there is no way to remove all of the stored values at once,
except for @code{kill(@var{a})} or @code{remarray(@var{a})},
which also remove the function definition.


Examples

If evaluating the function needs much time and only a limited number of points
is ever evaluated (which means not much time is spent looking up results in a
long list of cached results) Memoizing functions can speed up calculations
considerably.
@c ===beg===
@c showtime:true$
@c a[x]:=float(sum(sin(x*t),t,1,10000));
@c a[1];
@c a[1];
@c ===end===
@example
@group
(%i1) showtime:true$
Evaluation took 0.0000 seconds (0.0000 elapsed) using 0 bytes.
@end group
@group
(%i2) a[x]:=float(sum(sin(x*t),t,1,10000));
Evaluation took 0.0000 seconds (0.0000 elapsed) using 0 bytes.
(%o2)        a  := float(sum(sin(x t), t, 1, 10000))
              x
@end group
@group
(%i3) a[1];
Evaluation took 5.1250 seconds (5.1260 elapsed) using 775.250 MB.
(%o3)                   1.633891021792447
@end group
@group
(%i4) a[1];
Evaluation took 0.0000 seconds (0.0000 elapsed) using 0 bytes.
(%o4)                   1.633891021792447
@end group
@end example

As the memoizing function is only evaluated once for each input value
changes in variables the memoizing function uses are not considered
for values that are already cached:
@c ===beg===
@c a[x]:=b*x;
@c b:1;
@c a[2];
@c b:2;
@c a[1];
@c a[2];
@c ===end===
@example
@group
(%i1) a[x]:=b*x;
(%o1)                       a  := b x
                             x
@end group
@group
(%i2) b:1;
(%o2)                           1
@end group
@group
(%i3) a[2];
(%o3)                           2
@end group
@group
(%i4) b:2;
(%o4)                           2
@end group
@group
(%i5) a[1];
(%o5)                           2
@end group
@group
(%i6) a[2];
(%o6)                           2
@end group
@end example

@c -----------------------------------------------------------------------------
@node Macros, Functions and Variables for Function Definition, Function, Function Definition
@section Macros
@c -----------------------------------------------------------------------------

@c -----------------------------------------------------------------------------
@anchor{buildq}
@deffn {Function} buildq (@var{L}, @var{expr})

Substitutes variables named by the list @var{L} into the expression @var{expr},
in parallel, without evaluating @var{expr}.  The resulting expression is
simplified, but not evaluated, after @code{buildq} carries out the substitution.

The elements of @var{L} are symbols or assignment expressions
@code{@var{symbol}: @var{value}}, evaluated in parallel.  That is, the binding
of a variable on the right-hand side of an assignment is the binding of that
variable in the context from which @code{buildq} was called, not the binding of
that variable in the variable list @var{L}.  If some variable in @var{L} is not
given an explicit assignment, its binding in @code{buildq} is the same as in
the context from which @code{buildq} was called.

Then the variables named by @var{L} are substituted into @var{expr} in parallel.
That is, the substitution for every variable is determined before any
substitution is made, so the substitution for one variable has no effect on any
other.

If any variable @var{x} appears as @code{splice (@var{x})} in @var{expr},
then @var{x} must be bound to a list,
and the list is spliced (interpolated) into @var{expr} instead of substituted.

Any variables in @var{expr} not appearing in @var{L} are carried into the result
verbatim, even if they have bindings in the context from which @code{buildq}
was called.

Examples

@code{a} is explicitly bound to @code{x}, while @code{b} has the same binding
(namely 29) as in the calling context, and @code{c} is carried through verbatim.
The resulting expression is not evaluated until the explicit evaluation
@code{''%}.

@c ===beg===
@c (a: 17, b: 29, c: 1729)$
@c buildq ([a: x, b], a + b + c);
@c ''%;
@c ===end===
@example
(%i1) (a: 17, b: 29, c: 1729)$
@group
(%i2) buildq ([a: x, b], a + b + c);
(%o2)                      x + c + 29
@end group
@group
(%i3) ''%;
(%o3)                       x + 1758
@end group
@end example

@code{e} is bound to a list, which appears as such in the arguments of
@code{foo}, and interpolated into the arguments of @code{bar}.

@c ===beg===
@c buildq ([e: [a, b, c]], foo (x, e, y));
@c buildq ([e: [a, b, c]], bar (x, splice (e), y));
@c ===end===
@example
@group
(%i1) buildq ([e: [a, b, c]], foo (x, e, y));
(%o1)                 foo(x, [a, b, c], y)
@end group
@group
(%i2) buildq ([e: [a, b, c]], bar (x, splice (e), y));
(%o2)                  bar(x, a, b, c, y)
@end group
@end example

The result is simplified after substitution.  If simplification were applied
before substitution, these two results would be the same.

@c ===beg===
@c buildq ([e: [a, b, c]], splice (e) + splice (e));
@c buildq ([e: [a, b, c]], 2 * splice (e));
@c ===end===
@example
@group
(%i1) buildq ([e: [a, b, c]], splice (e) + splice (e));
(%o1)                    2 c + 2 b + 2 a
@end group
@group
(%i2) buildq ([e: [a, b, c]], 2 * splice (e));
(%o2)                        2 a b c
@end group
@end example

The variables in @var{L} are bound in parallel; if bound sequentially,
the first result would be @code{foo (b, b)}.
Substitutions are carried out in parallel;
compare the second result with the result of @code{subst},
which carries out substitutions sequentially.

@c ===beg===
@c buildq ([a: b, b: a], foo (a, b));
@c buildq ([u: v, v: w, w: x, x: y, y: z, z: u], 
@c               bar (u, v, w, x, y, z));
@c subst ([u=v, v=w, w=x, x=y, y=z, z=u], 
@c              bar (u, v, w, x, y, z));
@c ===end===
@example
@group
(%i1) buildq ([a: b, b: a], foo (a, b));
(%o1)                       foo(b, a)
@end group
@group
(%i2) buildq ([u: v, v: w, w: x, x: y, y: z, z: u],
              bar (u, v, w, x, y, z));
(%o2)                 bar(v, w, x, y, z, u)
@end group
@group
(%i3) subst ([u=v, v=w, w=x, x=y, y=z, z=u],
             bar (u, v, w, x, y, z));
(%o3)                 bar(u, u, u, u, u, u)
@end group
@end example

Construct a list of equations with some variables or expressions on the
left-hand side and their values on the right-hand side.  @code{macroexpand}
shows the expression returned by @code{show_values}.

@c ===beg===
@c show_values ([L]) ::= buildq ([L], map ("=", 'L, L));
@c (a: 17, b: 29, c: 1729)$
@c show_values (a, b, c - a - b);
@c macroexpand (show_values (a, b, c - a - b));
@c ===end===
@example
@group
(%i1) show_values ([L]) ::= buildq ([L], map ("=", 'L, L));
(%o1)   show_values([L]) ::= buildq([L], map("=", 'L, L))
@end group
(%i2) (a: 17, b: 29, c: 1729)$
@group
(%i3) show_values (a, b, c - a - b);
(%o3)          [a = 17, b = 29, c - b - a = 1683]
@end group
@group
(%i4) macroexpand (show_values (a, b, c - a - b));
(%o4)    map(=, '([a, b, c - b - a]), [a, b, c - b - a])
@end group
@end example

Given a function of several arguments,
create another function for which some of the arguments are fixed.

@c ===beg===
@c curry (f, [a]) :=
@c         buildq ([f, a], lambda ([[x]], apply (f, append (a, x))))$
@c by3 : curry ("*", 3);
@c by3 (a + b);
@c ===end===
@example
@group
(%i1) curry (f, [a]) :=
        buildq ([f, a], lambda ([[x]], apply (f, append (a, x))))$
@end group
@group
(%i2) by3 : curry ("*", 3);
(%o2)        lambda([[x]], apply(*, append([3], x)))
@end group
@group
(%i3) by3 (a + b);
(%o3)                       3 (b + a)
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{macroexpand}
@deffn {Function} macroexpand (@var{expr})

Returns the macro expansion of @var{expr} without evaluating it,
when @code{expr} is a macro function call.
Otherwise, @code{macroexpand} returns @var{expr}.

If the expansion of @var{expr} yields another macro function call,
that macro function call is also expanded.

@code{macroexpand} quotes its argument.
However, if the expansion of a macro function call has side effects,
those side effects are executed.

See also @mrefcomma{::=} @mrefcomma{macros} and @mrefdot{macroexpand1}.

Examples

@c ===beg===
@c g (x) ::= x / 99;
@c h (x) ::= buildq ([x], g (x - a));
@c a: 1234;
@c macroexpand (h (y));
@c h (y);
@c ===end===
@example
@group
(%i1) g (x) ::= x / 99;
                                    x
(%o1)                      g(x) ::= --
                                    99
@end group
@group
(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2)            h(x) ::= buildq([x], g(x - a))
@end group
@group
(%i3) a: 1234;
(%o3)                         1234
@end group
@group
(%i4) macroexpand (h (y));
                              y - a
(%o4)                         -----
                               99
@end group
@group
(%i5) h (y);
                            y - 1234
(%o5)                       --------
                               99
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{macroexpand1}
@deffn {Function} macroexpand1 (@var{expr})

Returns the macro expansion of @var{expr} without evaluating it,
when @code{expr} is a macro function call.
Otherwise, @code{macroexpand1} returns @var{expr}.

@code{macroexpand1} quotes its argument.
However, if the expansion of a macro function call has side effects,
those side effects are executed.

If the expansion of @var{expr} yields another macro function call,
that macro function call is not expanded.

See also @mrefcomma{::=} @mrefcomma{macros} and @mrefdot{macroexpand}

Examples

@c ===beg===
@c g (x) ::= x / 99;
@c h (x) ::= buildq ([x], g (x - a));
@c a: 1234;
@c macroexpand1 (h (y));
@c h (y);
@c ===end===
@example
@group
(%i1) g (x) ::= x / 99;
                                    x
(%o1)                      g(x) ::= --
                                    99
@end group
@group
(%i2) h (x) ::= buildq ([x], g (x - a));
(%o2)            h(x) ::= buildq([x], g(x - a))
@end group
@group
(%i3) a: 1234;
(%o3)                         1234
@end group
@group
(%i4) macroexpand1 (h (y));
(%o4)                       g(y - a)
@end group
@group
(%i5) h (y);
                            y - 1234
(%o5)                       --------
                               99
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{macros}
@defvr {Global variable} macros
Default value: @code{[]}

@code{macros} is the list of user-defined macro functions.
The macro function definition operator @code{::=} puts a new macro function
onto this list, and @code{kill}, @code{remove}, and @code{remfunction} remove
macro functions from the list.

See also @mrefdot{infolists}

@opencatbox{Categories:}
@category{Function definition}
@category{Global variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{splice}
@deffn {Function} splice (@var{a})

Splices (interpolates) the list named by the atom @var{a} into an expression,
but only if @code{splice} appears within @code{buildq};
otherwise, @code{splice} is treated as an undefined function.
If appearing within @code{buildq} as @var{a} alone (without @code{splice}),
@var{a} is substituted (not interpolated) as a list into the result.
The argument of @code{splice} can only be an atom;
it cannot be a literal list or an expression which yields a list.

Typically @code{splice} supplies the arguments for a function or operator.
For a function @code{f}, the expression @code{f (splice (@var{a}))} within
@code{buildq} expands to @code{f (@var{a}[1], @var{a}[2], @var{a}[3], ...)}.
For an operator @code{o}, the expression @code{"o" (splice (@var{a}))} within
@code{buildq} expands to @code{"o" (@var{a}[1], @var{a}[2], @var{a}[3], ...)},
where @code{o} may be any type of operator (typically one which takes multiple
arguments).  Note that the operator must be enclosed in double quotes @code{"}.

Examples

@c ===beg===
@c buildq ([x: [1, %pi, z - y]], foo (splice (x)) / length (x));
@c buildq ([x: [1, %pi]], "/" (splice (x)));
@c matchfix ("<>", "<>");
@c buildq ([x: [1, %pi, z - y]], "<>" (splice (x)));
@c ===end===
@example
@group
(%i1) buildq ([x: [1, %pi, z - y]], foo (splice (x)) / length (x));
                       foo(1, %pi, z - y)
(%o1)                -----------------------
                     length([1, %pi, z - y])
@end group
@group
(%i2) buildq ([x: [1, %pi]], "/" (splice (x)));
                                1
(%o2)                          ---
                               %pi
@end group
@group
(%i3) matchfix ("<>", "<>");
(%o3)                          <>
@end group
@group
(%i4) buildq ([x: [1, %pi, z - y]], "<>" (splice (x)));
(%o4)                   <>1, %pi, z - y<>
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c end concepts Function Definition

@c -----------------------------------------------------------------------------
@node Functions and Variables for Function Definition,  , Macros, Function Definition
@section Functions and Variables for Function Definition
@c -----------------------------------------------------------------------------

@c -----------------------------------------------------------------------------
@anchor{apply}
@deffn {Function} apply (@var{F}, [@var{x_1}, @dots{}, @var{x_n}])

Constructs and evaluates an expression @code{@var{F}(@var{arg_1}, ...,
@var{arg_n})}.

@code{apply} does not attempt to distinguish a @mref{memoizing function} from an ordinary 
function; when @var{F} is the name of a memoizing function, @code{apply} evaluates
@code{@var{F}(...)} (that is, a function call with parentheses instead of square
brackets).  @code{arrayapply} evaluates a function call with square brackets in
this case.

See also @mref{funmake} and @mrefdot{args}

Examples:

@code{apply} evaluates its arguments.
In this example, @code{min} is applied to the value of @code{L}.

@c ===beg===
@c L : [1, 5, -10.2, 4, 3];
@c apply (min, L);
@c ===end===
@example
@group
(%i1) L : [1, 5, -10.2, 4, 3];
(%o1)                 [1, 5, - 10.2, 4, 3]
@end group
@group
(%i2) apply (min, L);
(%o2)                        - 10.2
@end group
@end example

@code{apply} evaluates arguments, even if the function @var{F} quotes them.

@c ===beg===
@c F (x) := x / 1729;
@c fname : F;
@c dispfun (F);
@c dispfun (fname);
@c apply (dispfun, [fname]);
@c ===end===
@example
@group
(%i1) F (x) := x / 1729;
                                   x
(%o1)                     F(x) := ----
                                  1729
@end group
@group
(%i2) fname : F;
(%o2)                           F
@end group
@group
(%i3) dispfun (F);
                                   x
(%t3)                     F(x) := ----
                                  1729

(%o3)                         [%t3]
@end group
@group
(%i4) dispfun (fname);
fundef: no such function: fname
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i5) apply (dispfun, [fname]);
                                   x
(%t5)                     F(x) := ----
                                  1729

(%o5)                         [%t5]
@end group
@end example

@code{apply} evaluates the function name @var{F}.
Single quote @code{'} defeats evaluation.
@code{demoivre} is the name of a global variable and also a function.

@c ===beg===
@c demoivre;
@c demoivre (exp (%i * x));
@c apply (demoivre, [exp (%i * x)]);
@c apply ('demoivre, [exp (%i * x)]);
@c ===end===
@example
@group
(%i1) demoivre;
(%o1)                         false
@end group
@group
(%i2) demoivre (exp (%i * x));
(%o2)                  %i sin(x) + cos(x)
@end group
@group
(%i3) apply (demoivre, [exp (%i * x)]);
apply: found false where a function was expected.
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i4) apply ('demoivre, [exp (%i * x)]);
(%o4)                  %i sin(x) + cos(x)
@end group
@end example

How to convert a nested list into a matrix:

@c ===beg===
@c a:[[1,2],[3,4]];
@c apply(matrix,a);
@c ===end===
@example
@group
(%i1) a:[[1,2],[3,4]];
(%o1)                   [[1, 2], [3, 4]]
@end group
@group
(%i2) apply(matrix,a);
                            [ 1  2 ]
(%o2)                       [      ]
                            [ 3  4 ]
@end group
@end example


@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{block}
@deffn  {Function} block @
@fname{block} ([@var{v_1}, @dots{}, @var{v_m}], @var{expr_1}, @dots{}, @var{expr_n}) @
@fname{block} (@var{expr_1}, @dots{}, @var{expr_n})

The function @code{block} allows to make the variables @var{v_1}, @dots{},
@var{v_m} to be local for a sequence of commands. If these variables
are already bound @code{block} saves the current values of the
variables @var{v_1}, @dots{}, @var{v_m} (if any) upon entry to the
block, then unbinds the variables so that they evaluate to themselves;
The local variables may be bound to arbitrary values within the block
but when the block is exited the saved values are restored, and the
values assigned within the block are lost.

If there is no need to define local variables then the list at the
beginning of the @code{block} command may be omitted.
In this case if neither @mref{return} nor @mref{go} are used
@code{block} behaves similar to the following construct:

@example
( expr_1, expr_2,... , expr_n );
@end example

@var{expr_1}, @dots{}, @var{expr_n} will be evaluated in sequence and
the value of the last expression will be returned. The sequence can be 
modified by the @code{go}, @code{throw}, and @code{return} functions.  The last
expression is @var{expr_n} unless @code{return} or an expression containing
@code{throw} is evaluated.

The declaration @code{local(@var{v_1}, ..., @var{v_m})} within @code{block}
saves the properties associated with the symbols @var{v_1}, @dots{}, @var{v_m},
removes any properties before evaluating other expressions, and restores any
saved properties on exit from the block.  Some declarations are implemented as
properties of a symbol, including @code{:=}, @code{array}, @code{dependencies},
@code{atvalue}, @code{matchdeclare}, @code{atomgrad}, @code{constant},
@code{nonscalar}, @code{assume}, and some others.  The effect of @code{local}
is to make such declarations effective only within the block; otherwise
declarations within a block are actually global declarations.

@code{block} may appear within another @code{block}.
Local variables are established each time a new @code{block} is evaluated.
Local variables appear to be global to any enclosed blocks.
If a variable is non-local in a block,
its value is the value most recently assigned by an enclosing block, if any,
otherwise, it is the value of the variable in the global environment.
This policy may coincide with the usual understanding of "dynamic scope".

The value of the block is the value of the last statement or the
value of the argument to the function @code{return} which may be used to exit
explicitly from the block. The function @code{go} may be used to transfer
control to the statement of the block that is tagged with the argument
to @code{go}.  To tag a statement, precede it by an atomic argument as
another statement in the block.  For example:
@code{block ([x], x:1, loop, x: x+1, ..., go(loop), ...)}.  The argument to
@code{go} must be the name of a tag appearing within the block.  One cannot use
@code{go} to transfer to a tag in a block other than the one containing the
@code{go}.

Blocks typically appear on the right side of a function definition
but can be used in other places as well.

See also @mref{return} and @mrefdot{go}

@c Needs some examples.

@opencatbox{Categories:}
@category{Expressions}
@category{Programming}
@closecatbox
@end deffn

@c REPHRASE, NEEDS EXAMPLE

@c -----------------------------------------------------------------------------
@anchor{break}
@deffn {Function} break (@var{expr_1}, @dots{}, @var{expr_n})

Evaluates and prints @var{expr_1}, @dots{}, @var{expr_n} and then
causes a Maxima break at which point the user can examine and change
his environment.  Upon typing @code{exit;} the computation resumes.

@opencatbox{Categories:}
@category{Debugging}
@closecatbox
@end deffn

@c FOR SOME REASON throw IS IN SOME OTHER FILE. MOVE throw INTO THIS FILE.
@c NEEDS CLARIFICATION

@c -----------------------------------------------------------------------------
@anchor{catch}
@deffn {Function} catch (@var{expr_1}, @dots{}, @var{expr_n})

Evaluates @var{expr_1}, @dots{}, @var{expr_n} one by one; if any
leads to the evaluation of an expression of the
form @code{throw (arg)}, then the value of the @code{catch} is the value of
@code{throw (arg)}, and no further expressions are evaluated.
This "non-local return" thus goes through any depth of
nesting to the nearest enclosing @code{catch}.  If there is no @code{catch}
enclosing a @code{throw}, an error message is printed.

If the evaluation of the arguments does not lead to the evaluation of any
@code{throw} then the value of @code{catch} is the value of @var{expr_n}.

@c ===beg===
@c lambda ([x], if x < 0 then throw(x) else f(x))$
@c g(l) := catch (map (''%, l))$
@c g ([1, 2, 3, 7]);
@c g ([1, 2, -3, 7]);
@c ===end===
@example
(%i1) lambda ([x], if x < 0 then throw(x) else f(x))$
(%i2) g(l) := catch (map (''%, l))$
(%i3) g ([1, 2, 3, 7]);
(%o3)               [f(1), f(2), f(3), f(7)]
(%i4) g ([1, 2, -3, 7]);
(%o4)                          - 3
@end example

@c REWORD THIS PART.
The function @code{g} returns a list of @code{f} of each element of @code{l} if
@code{l} consists only of non-negative numbers; otherwise, @code{g} "catches"
the first negative element of @code{l} and "throws" it up.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{compfile}
@deffn  {Function} compfile @
@fname{compfile} (@var{filename}, @var{f_1}, @dots{}, @var{f_n}) @
@fname{compfile} (@var{filename}, functions) @
@fname{compfile} (@var{filename}, all)

Translates Maxima functions into Lisp and writes the translated code into the
file @var{filename}.

@code{compfile(@var{filename}, @var{f_1}, ..., @var{f_n})} translates the
specified functions.  @code{compfile (@var{filename}, functions)} and
@code{compfile (@var{filename}, all)} translate all user-defined functions.

The Lisp translations are not evaluated, nor is the output file processed by
the Lisp compiler.
@c SO LET'S CONSIDER GIVING THIS FUNCTION A MORE ACCURATE NAME.
@code{translate} creates and evaluates Lisp translations.  @code{compile_file}
translates Maxima into Lisp, and then executes the Lisp compiler.

See also @mrefcomma{translate} @mrefcomma{translate_file} and @mrefdot{compile_file}

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c THIS VARIABLE IS OBSOLETE: ASSIGNING compgrind: true CAUSES compfile
@c TO EVENTUALLY CALL AN OBSOLETE FUNCTION SPRIN1.
@c RECOMMENDATION IS TO CUT THIS ITEM, AND CUT $compgrind FROM src/transs.lisp
@c @defvar compgrind
@c Default value: @code{false}
@c 
@c When @code{compgrind} is @code{true}, function definitions printed by
@c @code{compfile} are pretty-printed.
@c 
@c @end defvar

@c -----------------------------------------------------------------------------
@anchor{compile}
@deffn  {Function} compile @
@fname{compile} (@var{f_1}, @dots{}, @var{f_n}) @
@fname{compile} (functions) @
@fname{compile} (all)

Translates Maxima functions @var{f_1}, @dots{}, @var{f_n} into Lisp, evaluates
the Lisp translations, and calls the Lisp function @code{COMPILE} on each
translated function.  @code{compile} returns a list of the names of the
compiled functions.

@code{compile (all)} or @code{compile (functions)} compiles all user-defined
functions.

@code{compile} quotes its arguments; 
the quote-quote operator @code{'@w{}'} defeats quotation.

Compiling a function to native code can mean a big increase in speed and might 
cause the memory footprint to reduce drastically.
Code tends to be especially effective when the flexibility it needs to provide
is limited. If compilation doesn't provide the speed that is needed a few ways
to limit the code's functionality are the following:
@itemize @bullet
@item If the function accesses global variables the complexity of the function
      can be drastically be reduced by limiting these variables to one data type,
      for example using @mref{mode_declare} or a statement like the following one:
      @code{put(x_1, bigfloat, numerical_type)}
@item The compiler might warn about undeclared variables if text could either be
      a named option to a command or (if they are assigned a value to) the name
      of a variable. Prepending the option with a single quote @code{'}
      tells the compiler that the text is meant as an option.
@end itemize

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{define}
@deffn  {Function} define @
@fname{define} (@var{f}(@var{x_1}, @dots{}, @var{x_n}), @var{expr}) @
@fname{define} (@var{f}[@var{x_1}, @dots{}, @var{x_n}], @var{expr}) @
@fname{define} (@var{f}[@var{x_1}, @dots{}, @var{x_n}](@var{y_1}, @dots{}, @var{y_m}), @var{expr}) @
@fname{define} (funmake (@var{f}, [@var{x_1}, @dots{}, @var{x_n}]), @var{expr}) @
@fname{define} (arraymake (@var{f}, [@var{x_1}, @dots{}, @var{x_n}]), @var{expr}) @
@fname{define} (ev (@var{expr_1}), @var{expr_2})

Defines a function named @var{f} with arguments @var{x_1}, @dots{}, @var{x_n}
and function body @var{expr}.  @code{define} always evaluates its second
argument (unless explicitly quoted).  The function so defined may be an ordinary
Maxima function (with arguments enclosed in parentheses) or a @mref{memoizing function}
(with arguments enclosed in square brackets).

When the last or only function argument @var{x_n} is a list of one element,
the function defined by @code{define} accepts a variable number of arguments.
Actual arguments are assigned one-to-one to formal arguments @var{x_1}, @dots{},
@var{x_(n - 1)}, and any further actual arguments, if present, are assigned to
@var{x_n} as a list.

When the first argument of @code{define} is an expression of the form
@code{@var{f}(@var{x_1}, ..., @var{x_n})} or @code{@var{f}[@var{x_1}, ...,
@var{x_n}]}, the function arguments are evaluated but @var{f} is not evaluated,
even if there is already a function or variable by that name.

When the first argument is an expression with operator @code{funmake},
@code{arraymake}, or @code{ev}, the first argument is evaluated;
this allows for the function name to be computed, as well as the body.

All function definitions appear in the same namespace; defining a function
@code{f} within another function @code{g} does not automatically limit the scope
of @code{f} to @code{g}.  However, @code{local(f)} makes the definition of
function @code{f} effective only within the block or other compound expression
in which @code{local} appears.

If some formal argument @var{x_k} is a quoted symbol (after evaluation), the
function defined by @code{define} does not evaluate the corresponding actual
argument.  Otherwise all actual arguments are evaluated.

See also @mref{:=} and @mrefdot{::=}

Examples:

@code{define} always evaluates its second argument (unless explicitly quoted).

@c ===beg===
@c expr : cos(y) - sin(x);
@c define (F1 (x, y), expr);
@c F1 (a, b);
@c F2 (x, y) := expr;
@c F2 (a, b);
@c ===end===
@example
@group
(%i1) expr : cos(y) - sin(x);
(%o1)                    cos(y) - sin(x)
@end group
@group
(%i2) define (F1 (x, y), expr);
(%o2)              F1(x, y) := cos(y) - sin(x)
@end group
@group
(%i3) F1 (a, b);
(%o3)                    cos(b) - sin(a)
@end group
@group
(%i4) F2 (x, y) := expr;
(%o4)                   F2(x, y) := expr
@end group
@group
(%i5) F2 (a, b);
(%o5)                    cos(y) - sin(x)
@end group
@end example

The function defined by @code{define} may be an ordinary Maxima function or a
@mref{memoizing function}.

@c ===beg===
@c define (G1 (x, y), x.y - y.x);
@c define (G2 [x, y], x.y - y.x);
@c ===end===
@example
@group
(%i1) define (G1 (x, y), x.y - y.x);
(%o1)               G1(x, y) := x . y - y . x
@end group
@group
(%i2) define (G2 [x, y], x.y - y.x);
(%o2)                G2     := x . y - y . x
                       x, y
@end group
@end example

When the last or only function argument @var{x_n} is a list of one element,
the function defined by @code{define} accepts a variable number of arguments.

@c ===beg===
@c define (H ([L]), '(apply ("+", L)));
@c H (a, b, c);
@c ===end===
@example
@group
(%i1) define (H ([L]), '(apply ("+", L)));
(%o1)                H([L]) := apply("+", L)
@end group
@group
(%i2) H (a, b, c);
(%o2)                       c + b + a
@end group
@end example

When the first argument is an expression with operator @code{funmake},
@code{arraymake}, or @code{ev}, the first argument is evaluated.

@c ===beg===
@c [F : I, u : x];
@c funmake (F, [u]);
@c define (funmake (F, [u]), cos(u) + 1);
@c define (arraymake (F, [u]), cos(u) + 1);
@c define (foo (x, y), bar (y, x));
@c define (ev (foo (x, y)), sin(x) - cos(y));
@c ===end===
@example
@group
(%i1) [F : I, u : x];
(%o1)                        [I, x]
@end group
@group
(%i2) funmake (F, [u]);
(%o2)                         I(x)
@end group
@group
(%i3) define (funmake (F, [u]), cos(u) + 1);
(%o3)                  I(x) := cos(x) + 1
@end group
@group
(%i4) define (arraymake (F, [u]), cos(u) + 1);
(%o4)                   I  := cos(x) + 1
                         x
@end group
@group
(%i5) define (foo (x, y), bar (y, x));
(%o5)                foo(x, y) := bar(y, x)
@end group
@group
(%i6) define (ev (foo (x, y)), sin(x) - cos(y));
(%o6)             bar(y, x) := sin(x) - cos(y)
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c SEE NOTE BELOW ABOUT THE DOCUMENTATION STRING
@c @deffn {Function} define_variable (@var{name}, @var{default_value}, @var{mode}, @var{documentation})

@c -----------------------------------------------------------------------------
@anchor{define_variable}
@deffn {Function} define_variable (@var{name}, @var{default_value}, @var{mode})

Introduces a global variable into the Maxima environment.
@code{define_variable} is useful in user-written packages, which are often
translated or compiled as it gives the compiler hints of the type (``mode'')
of a variable and therefore avoids requiring it to generate generic code that
can deal with every variable being an integer, float, maxima object, array etc.

@code{define_variable} carries out the following steps:

@enumerate
@item
@code{mode_declare (@var{name}, @var{mode})} declares the mode (``type'') of
@var{name} to the translator which can considerably speed up compiled code as
it allows having to create generic code. See @mref{mode_declare} for a list of
the possible modes.

@item
If the variable is unbound, @var{default_value} is assigned to @var{name}.

@item
Associates @var{name} with a test function
to ensure that @var{name} is only assigned values of the declared mode.
@end enumerate


@c FOLLOWING STATEMENT APPEARS TO BE OUT OF DATE.
@c EXAMINING DEFMSPEC $DEFINE_VARIABLE AND DEF%TR $DEFINE_VARIABLE IN src/trmode.lisp,
@c IT APPEARS THAT THE 4TH ARGUMENT IS NEVER REFERRED TO.
@c EXECUTING translate_file ON A MAXIMA BATCH FILE WHICH CONTAINS
@c define_variable (foo, 2222, integer, "THIS IS FOO");
@c DOES NOT PUT "THIS IS FOO" INTO THE LISP FILE NOR THE UNLISP FILE.
@c The optional 4th argument is a documentation string.  When
@c @code{translate_file} is used on a package which includes documentation
@c strings, a second file is output in addition to the Lisp file which
@c will contain the documentation strings, formatted suitably for use in
@c manuals, usage files, or (for instance) @code{describe}.

The @code{value_check} property can be assigned to any variable which has been
defined via @code{define_variable} with a mode other than @code{any}.
The @code{value_check} property is a lambda expression or the name of a function
of one variable, which is called when an attempt is made to assign a value to
the variable.  The argument of the @code{value_check} function is the would-be
assigned value.

@code{define_variable} evaluates @code{default_value}, and quotes @code{name}
and @code{mode}.  @code{define_variable} returns the current value of
@code{name}, which is @code{default_value} if @code{name} was unbound before,
and otherwise it is the previous value of @code{name}.

Examples:

@code{foo} is a Boolean variable, with the initial value @code{true}.

@c ===beg===
@c define_variable (foo, true, boolean);
@c foo;
@c foo: false;
@c foo: %pi;
@c foo;
@c ===end===
@example
@group
(%i1) define_variable (foo, true, boolean);
(%o1)                         true
@end group
@group
(%i2) foo;
(%o2)                         true
@end group
@group
(%i3) foo: false;
(%o3)                         false
@end group
@group
(%i4) foo: %pi;
translator: foo was declared with mode boolean
                                          , but it has value: %pi
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i5) foo;
(%o5)                         false
@end group
@end example

@code{bar} is an integer variable, which must be prime.

@c ===beg===
@c define_variable (bar, 2, integer);
@c qput (bar, prime_test, value_check);
@c prime_test (y) := if not primep(y) then 
@c                            error (y, "is not prime.");
@c bar: 1439;
@c bar: 1440;
@c bar;
@c ===end===
@example
@group
(%i1) define_variable (bar, 2, integer);
(%o1)                           2
@end group
@group
(%i2) qput (bar, prime_test, value_check);
(%o2)                      prime_test
@end group
@group
(%i3) prime_test (y) := if not primep(y) then
                           error (y, "is not prime.");
(%o3) prime_test(y) := if not primep(y)
                                   then error(y, "is not prime.")
@end group
@group
(%i4) bar: 1439;
(%o4)                         1439
@end group
@group
(%i5) bar: 1440;
1440 is not prime.
#0: prime_test(y=1440)
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i6) bar;
(%o6)                         1439
@end group
@end example

@code{baz_quux} is a variable which cannot be assigned a value.
The mode @code{any_check} is like @code{any}, but @code{any_check} enables the
@code{value_check} mechanism, and @code{any} does not.

@c ===beg===
@c define_variable (baz_quux, 'baz_quux, any_check);
@c F: lambda ([y], if y # 'baz_quux then 
@c                  error ("Cannot assign to `baz_quux'."));
@c qput (baz_quux, ''F, value_check);
@c baz_quux: 'baz_quux;
@c baz_quux: sqrt(2);
@c baz_quux;
@c ===end===
@example
@group
(%i1) define_variable (baz_quux, 'baz_quux, any_check);
(%o1)                       baz_quux
@end group
@group
(%i2) F: lambda ([y], if y # 'baz_quux then
                 error ("Cannot assign to `baz_quux'."));
(%o2) lambda([y], if y # 'baz_quux
                        then error(Cannot assign to `baz_quux'.))
@end group
@group
(%i3) qput (baz_quux, ''F, value_check);
(%o3) lambda([y], if y # 'baz_quux
                        then error(Cannot assign to `baz_quux'.))
@end group
@group
(%i4) baz_quux: 'baz_quux;
(%o4)                       baz_quux
@end group
@group
(%i5) baz_quux: sqrt(2);
Cannot assign to `baz_quux'.
#0: lambda([y],if y # 'baz_quux then
            error("Cannot assign to `baz_quux'."))(y=sqrt(2))
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i6) baz_quux;
(%o6)                       baz_quux
@end group
@end example

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{dispfun}
@deffn  {Function} dispfun @
@fname{dispfun} (@var{f_1}, @dots{}, @var{f_n}) @
@fname{dispfun} (all)

Displays the definition of the user-defined functions @var{f_1}, @dots{},
@var{f_n}.  Each argument may be the name of a macro (defined with @code{::=}),
an ordinary function (defined with @code{:=} or @code{define}), an array
function (defined with @code{:=} or @code{define}, but enclosing arguments in
square brackets @code{[ ]}), a subscripted function (defined with @code{:=} or
@code{define}, but enclosing some arguments in square brackets and others in
parentheses @code{( )}), one of a family of subscripted functions selected by a
particular subscript value, or a subscripted function defined with a constant
subscript.

@code{dispfun (all)} displays all user-defined functions as
given by the @code{functions}, @code{arrays}, and @code{macros} lists,
omitting subscripted functions defined with constant subscripts.

@code{dispfun} creates an intermediate expression label
(@code{%t1}, @code{%t2}, etc.)
for each displayed function, and assigns the function definition to the label.
In contrast, @code{fundef} returns the function definition.

@code{dispfun} quotes its arguments; the quote-quote operator @code{'@w{}'}
defeats quotation.  @code{dispfun} returns the list of intermediate expression
labels corresponding to the displayed functions.

Examples:

@c ===beg===
@c m(x, y) ::= x^(-y);
@c f(x, y) :=  x^(-y);
@c g[x, y] :=  x^(-y);
@c h[x](y) :=  x^(-y);
@c i[8](y) :=  8^(-y);
@c dispfun (m, f, g, h, h[5], h[10], i[8]);
@c ''%;
@c ===end===
@example
@group
(%i1) m(x, y) ::= x^(-y);
                                     - y
(%o1)                   m(x, y) ::= x
@end group
@group
(%i2) f(x, y) :=  x^(-y);
                                     - y
(%o2)                    f(x, y) := x
@end group
@group
(%i3) g[x, y] :=  x^(-y);
                                    - y
(%o3)                     g     := x
                           x, y
@end group
@group
(%i4) h[x](y) :=  x^(-y);
                                    - y
(%o4)                     h (y) := x
                           x
@end group
@group
(%i5) i[8](y) :=  8^(-y);
                                    - y
(%o5)                     i (y) := 8
                           8
@end group
@group
(%i6) dispfun (m, f, g, h, h[5], h[10], i[8]);
                                     - y
(%t6)                   m(x, y) ::= x

                                     - y
(%t7)                    f(x, y) := x

                                    - y
(%t8)                     g     := x
                           x, y

                                    - y
(%t9)                     h (y) := x
                           x

                                    1
(%t10)                     h (y) := --
                            5        y
                                    5

                                     1
(%t11)                    h  (y) := ---
                           10         y
                                    10

                                    - y
(%t12)                    i (y) := 8
                           8

(%o12)       [%t6, %t7, %t8, %t9, %t10, %t11, %t12]
@end group
@group
(%i13) ''%;
                     - y              - y            - y
(%o13) [m(x, y) ::= x   , f(x, y) := x   , g     := x   , 
                                            x, y
                  - y           1              1             - y
        h (y) := x   , h (y) := --, h  (y) := ---, i (y) := 8   ]
         x              5        y   10         y   8
                                5             10
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@category{Display functions}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{fullmap}
@deffn {Function} fullmap (@var{f}, @var{expr_1}, @dots{})

Similar to @code{map}, but @code{fullmap} keeps mapping down all subexpressions
until the main operators are no longer the same.

@code{fullmap} is used by the Maxima simplifier for certain matrix
manipulations; thus, Maxima sometimes generates an error message concerning
@code{fullmap} even though @code{fullmap} was not explicitly called by the user.

Examples:

@c ===beg===
@c a + b * c;
@c fullmap (g, %);
@c map (g, %th(2));
@c ===end===
@example
@group
(%i1) a + b * c;
(%o1)                        b c + a
@end group
@group
(%i2) fullmap (g, %);
(%o2)                   g(b) g(c) + g(a)
@end group
@group
(%i3) map (g, %th(2));
(%o3)                     g(b c) + g(a)
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@category{Expressions}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{fullmapl}
@deffn {Function} fullmapl (@var{f}, @var{list_1}, @dots{})

Similar to @code{fullmap}, but @code{fullmapl} only maps onto lists and
matrices.

Example:

@c ===beg===
@c fullmapl ("+", [3, [4, 5]], [[a, 1], [0, -1.5]]);
@c ===end===
@example
@group
(%i1) fullmapl ("+", [3, [4, 5]], [[a, 1], [0, -1.5]]);
(%o1)                [[a + 3, 4], [4, 3.5]]
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@category{Expressions}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{functions}
@defvr {System variable} functions
Default value: @code{[]}

@code{functions} is the list of ordinary Maxima functions
in the current session.
An ordinary function is a function constructed by
@code{define} or @code{:=} and called with parentheses @code{()}.
A function may be defined at the Maxima prompt
or in a Maxima file loaded by @code{load} or @code{batch}.

@mref{Memoizing functions} (called with square brackets, e.g., @code{F[x]}) and subscripted
functions (called with square brackets and parentheses, e.g., @code{F[x](y)})
are listed by the global variable @code{arrays}, and not by @code{functions}.

Lisp functions are not kept on any list.

Examples:

@c ===beg===
@c F_1 (x) := x - 100;
@c F_2 (x, y) := x / y;
@c define (F_3 (x), sqrt (x));
@c G_1 [x] := x - 100;
@c G_2 [x, y] := x / y;
@c define (G_3 [x], sqrt (x));
@c H_1 [x] (y) := x^y;
@c functions;
@c arrays;
@c ===end===
@example
@group
(%i1) F_1 (x) := x - 100;
(%o1)                   F_1(x) := x - 100
@end group
@group
(%i2) F_2 (x, y) := x / y;
                                      x
(%o2)                    F_2(x, y) := -
                                      y
@end group
@group
(%i3) define (F_3 (x), sqrt (x));
(%o3)                   F_3(x) := sqrt(x)
@end group
@group
(%i4) G_1 [x] := x - 100;
(%o4)                    G_1  := x - 100
                            x
@end group
@group
(%i5) G_2 [x, y] := x / y;
                                     x
(%o5)                     G_2     := -
                             x, y    y
@end group
@group
(%i6) define (G_3 [x], sqrt (x));
(%o6)                    G_3  := sqrt(x)
                            x
@end group
@group
(%i7) H_1 [x] (y) := x^y;
                                      y
(%o7)                     H_1 (y) := x
                             x
@end group
@group
(%i8) functions;
(%o8)              [F_1(x), F_2(x, y), F_3(x)]
@end group
@group
(%i9) arrays;
(%o9)                 [G_1, G_2, G_3, H_1]
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@category{Global variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{fundef}
@deffn {Function} fundef (@var{f})

Returns the definition of the function @var{f}.

The argument may be
@itemize @bullet
@item the name of a macro (defined with @code{::=}),
@item an ordinary function (defined with @code{:=} or @code{define}),
@item a @mref{memoizing function} (defined with @code{:=} or @code{define}, but enclosing arguments in square brackets @code{[ ]}),
@item a subscripted function (defined with @code{:=} or @code{define},
but enclosing some arguments in square brackets and others in parentheses
@code{( )}),
@item one of a family of subscripted functions selected by a particular
subscript value,
@item or a subscripted function defined with a constant subscript.
@end itemize

@code{fundef} quotes its argument;
the quote-quote operator @code{'@w{}'} defeats quotation.

@code{fundef (@var{f})} returns the definition of @var{f}.
In contrast, @code{dispfun (@var{f})} creates an intermediate expression label
and assigns the definition to the label.

@c PROBABLY NEED SOME EXAMPLES HERE
@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{funmake}
@deffn {Function} funmake (@var{F}, [@var{arg_1}, @dots{}, @var{arg_n}])

Returns an expression @code{@var{F}(@var{arg_1}, ..., @var{arg_n})}.
The return value is simplified, but not evaluated,
so the function @var{F} is not called, even if it exists.

@code{funmake} does not attempt to distinguish @mref{memoizing functions} from ordinary 
functions; when @var{F} is the name of a memoizing function,
@code{funmake} returns @code{@var{F}(...)}
(that is, a function call with parentheses instead of square brackets).
@code{arraymake} returns a function call with square brackets in this case.

@code{funmake} evaluates its arguments.

See also @mref{apply} and @mrefdot{args}

Examples:

@code{funmake} applied to an ordinary Maxima function.

@c ===beg===
@c F (x, y) := y^2 - x^2;
@c funmake (F, [a + 1, b + 1]);
@c ''%;
@c ===end===
@example
@group
(%i1) F (x, y) := y^2 - x^2;
                                   2    2
(%o1)                  F(x, y) := y  - x
@end group
@group
(%i2) funmake (F, [a + 1, b + 1]);
(%o2)                    F(a + 1, b + 1)
@end group
@group
(%i3) ''%;
                              2          2
(%o3)                  (b + 1)  - (a + 1)
@end group
@end example

@code{funmake} applied to a macro.

@c ===beg===
@c G (x) ::= (x - 1)/2;
@c funmake (G, [u]);
@c ''%;
@c ===end===
@example
@group
(%i1) G (x) ::= (x - 1)/2;
                                  x - 1
(%o1)                    G(x) ::= -----
                                    2
@end group
@group
(%i2) funmake (G, [u]);
(%o2)                         G(u)
@end group
@group
(%i3) ''%;
                              u - 1
(%o3)                         -----
                                2
@end group
@end example

@code{funmake} applied to a subscripted function.

@c ===beg===
@c H [a] (x) := (x - 1)^a;
@c funmake (H [n], [%e]);
@c ''%;
@c funmake ('(H [n]), [%e]);
@c ''%;
@c ===end===
@example
@group
(%i1) H [a] (x) := (x - 1)^a;
                                        a
(%o1)                   H (x) := (x - 1)
                         a
@end group
@group
(%i2) funmake (H [n], [%e]);
                                       n
(%o2)               lambda([x], (x - 1) )(%e)
@end group
@group
(%i3) ''%;
                                    n
(%o3)                       (%e - 1)
@end group
@group
(%i4) funmake ('(H [n]), [%e]);
(%o4)                        H (%e)
                              n
@end group
@group
(%i5) ''%;
                                    n
(%o5)                       (%e - 1)
@end group
@end example

@code{funmake} applied to a symbol which is not a defined function of any kind.

@c ===beg===
@c funmake (A, [u]);
@c ''%;
@c ===end===
@example
@group
(%i1) funmake (A, [u]);
(%o1)                         A(u)
@end group
@group
(%i2) ''%;
(%o2)                         A(u)
@end group
@end example

@code{funmake} evaluates its arguments, but not the return value.

@c ===beg===
@c det(a,b,c) := b^2 -4*a*c;
@c (x : 8, y : 10, z : 12);
@c f : det;
@c funmake (f, [x, y, z]);
@c ''%;
@c ===end===
@example
@group
(%i1) det(a,b,c) := b^2 -4*a*c;
                                    2
(%o1)              det(a, b, c) := b  - 4 a c
@end group
@group
(%i2) (x : 8, y : 10, z : 12);
(%o2)                          12
@end group
@group
(%i3) f : det;
(%o3)                          det
@end group
@group
(%i4) funmake (f, [x, y, z]);
(%o4)                    det(8, 10, 12)
@end group
@group
(%i5) ''%;
(%o5)                         - 284
@end group
@end example

Maxima simplifies @code{funmake}'s return value.

@c ===beg===
@c funmake (sin, [%pi / 2]);
@c ===end===
@example
@group
(%i1) funmake (sin, [%pi / 2]);
(%o1)                           1
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@category{Expressions}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{lambda}
@deffn  {Function} lambda @
@fname{lambda} ([@var{x_1}, @dots{}, @var{x_m}], @var{expr_1}, @dots{}, @var{expr_n}) @
@fname{lambda} ([[@var{L}]], @var{expr_1}, @dots{}, @var{expr_n}) @
@fname{lambda} ([@var{x_1}, @dots{}, @var{x_m}, [@var{L}]], @var{expr_1}, @dots{}, @var{expr_n})

Defines and returns a lambda expression (that is, an anonymous function).
The function may have required arguments @var{x_1}, @dots{}, @var{x_m} and/or
optional arguments @var{L}, which appear within the function body as a list.
The return value of the function is @var{expr_n}.  A lambda expression can be
assigned to a variable and evaluated like an ordinary function.  A lambda
expression may appear in some contexts in which a function name is expected.

When the function is evaluated, unbound local variables @var{x_1}, @dots{},
@var{x_m} are created.  @code{lambda} may appear within @code{block} or another
@code{lambda}; local variables are established each time another @code{block} or
@code{lambda} is evaluated.  Local variables appear to be global to any enclosed
@code{block} or @code{lambda}.  If a variable is not local, its value is the
value most recently assigned in an enclosing @code{block} or @code{lambda}, if
any, otherwise, it is the value of the variable in the global environment.
This policy may coincide with the usual understanding of "dynamic scope".

After local variables are established, @var{expr_1} through @var{expr_n} are
evaluated in turn.  The special variable @code{%%}, representing the value of
the preceding expression, is recognized.  @code{throw} and @code{catch} may also
appear in the list of expressions.

@code{return} cannot appear in a lambda expression unless enclosed by
@code{block}, in which case @code{return} defines the return value of the block
and not of the lambda expression, unless the block happens to be @var{expr_n}.
Likewise, @code{go} cannot appear in a lambda expression unless enclosed by
@code{block}.

@code{lambda} quotes its arguments; 
the quote-quote operator @code{'@w{}'} defeats quotation.

Examples:

@itemize @bullet
@item
A lambda expression can be assigned to a variable and evaluated like an ordinary
function.
@end itemize

@c ===beg===
@c f: lambda ([x], x^2);
@c f(a);
@c ===end===
@example
@group
(%i1) f: lambda ([x], x^2);
                                      2
(%o1)                    lambda([x], x )
@end group
@group
(%i2) f(a);
                                2
(%o2)                          a
@end group
@end example

@itemize @bullet
@item
A lambda expression may appear in contexts in which a function evaluation is expected.
@end itemize

@c ===beg===
@c lambda ([x], x^2) (a);
@c apply (lambda ([x], x^2), [a]);
@c map (lambda ([x], x^2), [a, b, c, d, e]);
@c ===end===
@example
@group
(%i1) lambda ([x], x^2) (a);
                                2
(%o1)                          a
@end group
@group
(%i2) apply (lambda ([x], x^2), [a]);
                                2
(%o2)                          a
@end group
@group
(%i3) map (lambda ([x], x^2), [a, b, c, d, e]);
                        2   2   2   2   2
(%o3)                 [a , b , c , d , e ]
@end group
@end example

@itemize @bullet
@item
Argument variables are local variables.
Other variables appear to be global variables.
Global variables are evaluated at the time the lambda expression is evaluated,
unless some special evaluation is forced by some means, such as @code{'@w{}'}.
@end itemize

@c ===beg===
@c a: %pi$
@c b: %e$
@c g: lambda ([a], a*b);
@c b: %gamma$
@c g(1/2);
@c g2: lambda ([a], a*''b);
@c b: %e$
@c g2(1/2);
@c ===end===
@example
(%i1) a: %pi$
(%i2) b: %e$
@group
(%i3) g: lambda ([a], a*b);
(%o3)                   lambda([a], a b)
@end group
(%i4) b: %gamma$
@group
(%i5) g(1/2);
                             %gamma
(%o5)                        ------
                               2
@end group
@group
(%i6) g2: lambda ([a], a*''b);
(%o6)                 lambda([a], a %gamma)
@end group
(%i7) b: %e$
@group
(%i8) g2(1/2);
                             %gamma
(%o8)                        ------
                               2
@end group
@end example

@itemize @bullet
@item
Lambda expressions may be nested.  Local variables within the outer lambda
expression appear to be global to the inner expression unless masked by local
variables of the same names.
@end itemize

@c ===beg===
@c h: lambda ([a, b], h2: lambda ([a], a*b), h2(1/2));
@c h(%pi, %gamma);
@c ===end===
@example
@group
(%i1) h: lambda ([a, b], h2: lambda ([a], a*b), h2(1/2));
                                                   1
(%o1)     lambda([a, b], h2 : lambda([a], a b), h2(-))
                                                   2
@end group
@group
(%i2) h(%pi, %gamma);
                             %gamma
(%o2)                        ------
                               2
@end group
@end example

@itemize @bullet
@item
Since @code{lambda} quotes its arguments, lambda expression @code{i} below does
not define a "multiply by @code{a}" function.  Such a function can be defined
via @code{buildq}, as in lambda expression @code{i2} below.
@end itemize

@c ===beg===
@c i: lambda ([a], lambda ([x], a*x));
@c i(1/2);
@c i2: lambda([a], buildq([a: a], lambda([x], a*x)));
@c i2(1/2);
@c i2(1/2)(%pi);
@c ===end===
@example
@group
(%i1) i: lambda ([a], lambda ([x], a*x));
(%o1)             lambda([a], lambda([x], a x))
@end group
@group
(%i2) i(1/2);
(%o2)                   lambda([x], a x)
@end group
@group
(%i3) i2: lambda([a], buildq([a: a], lambda([x], a*x)));
(%o3)    lambda([a], buildq([a : a], lambda([x], a x)))
@end group
@group
(%i4) i2(1/2);
                                    1
(%o4)                  lambda([x], (-) x)
                                    2
@end group
@group
(%i5) i2(1/2)(%pi);
                               %pi
(%o5)                          ---
                                2
@end group
@end example

@itemize @bullet
@item
A lambda expression may take a variable number of arguments,
which are indicated by @code{[@var{L}]} as the sole or final argument.
The arguments appear within the function body as a list.
@end itemize

@c ===beg===
@c f : lambda ([aa, bb, [cc]], aa * cc + bb);
@c f (foo, %i, 17, 29, 256);
@c g : lambda ([[aa]], apply ("+", aa));
@c g (17, 29, x, y, z, %e);
@c ===end===
@example
@group
(%i1) f : lambda ([aa, bb, [cc]], aa * cc + bb);
(%o1)          lambda([aa, bb, [cc]], aa cc + bb)
@end group
@group
(%i2) f (foo, %i, 17, 29, 256);
(%o2)       [17 foo + %i, 29 foo + %i, 256 foo + %i]
@end group
@group
(%i3) g : lambda ([[aa]], apply ("+", aa));
(%o3)             lambda([[aa]], apply(+, aa))
@end group
@group
(%i4) g (17, 29, x, y, z, %e);
(%o4)                  z + y + x + %e + 46
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION AND EXAMPLES

@c -----------------------------------------------------------------------------
@anchor{local}
@deffn {Function} local (@var{v_1}, @dots{}, @var{v_n})

Saves the properties associated with the symbols @var{v_1}, @dots{}, @var{v_n},
removes any properties before evaluating other expressions,
and restores any saved properties on exit
from the block or other compound expression in which @code{local} appears.

Some declarations are implemented as properties of a symbol, including
@code{:=}, @code{array}, @code{dependencies}, @code{atvalue},
@code{matchdeclare}, @code{atomgrad}, @code{constant}, @code{nonscalar},
@code{assume}, and some others.  The effect of @code{local} is to make such
declarations effective only within the block or other compound expression in
which @code{local} appears; otherwise such declarations are global declarations.

@code{local} can only appear in @code{block}
or in the body of a function definition or @code{lambda} expression,
and only one occurrence is permitted in each.

@code{local} quotes its arguments.
@code{local} returns @code{done}.

Example:

A local function definition.

@c ===beg===
@c foo (x) := 1 - x;
@c foo (100);
@c block (local (foo), foo (x) := 2 * x, foo (100));
@c foo (100);
@c ===end===
@example
@group
(%i1) foo (x) := 1 - x;
(%o1)                    foo(x) := 1 - x
@end group
@group
(%i2) foo (100);
(%o2)                         - 99
@end group
@group
(%i3) block (local (foo), foo (x) := 2 * x, foo (100));
(%o3)                          200
@end group
@group
(%i4) foo (100);
(%o4)                         - 99
@end group
@end example

@opencatbox{Categories:}
@category{Function definition}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{macroexpansion}
@defvr {Option variable} macroexpansion
Default value: @code{false}

@code{macroexpansion} controls whether the expansion (that is, the return value)
of a macro function is substituted for the macro function call.
A substitution may speed up subsequent expression evaluations,
at the cost of storing the expansion.

@table @code
@item false
The expansion of a macro function is not substituted for the macro function call.
@item expand
The first time a macro function call is evaluated,
the expansion is stored.
The expansion is not recomputed on subsequent calls;
any side effects (such as @code{print} or assignment to global variables) happen
only when the macro function call is first evaluated.
Expansion in an expression does not affect other expressions
which have the same macro function call.
@item displace
The first time a macro function call is evaluated,
the expansion is substituted for the call,
thus modifying the expression from which the macro function was called.
The expansion is not recomputed on subsequent calls;
any side effects happen only when the macro function call is first evaluated.
Expansion in an expression does not affect other expressions
which have the same macro function call.
@end table

Examples

When @code{macroexpansion} is @code{false},
a macro function is called every time the calling expression is evaluated,
and the calling expression is not modified.

@c ===beg===
@c f (x) := h (x) / g (x);
@c g (x) ::= block (print ("x + 99 is equal to", x), 
@c                        return (x + 99));
@c h (x) ::= block (print ("x - 99 is equal to", x), 
@c                        return (x - 99));
@c macroexpansion: false;
@c f (a * b);
@c dispfun (f);
@c f (a * b);
@c ===end===
@example
@group
(%i1) f (x) := h (x) / g (x);
                                  h(x)
(%o1)                     f(x) := ----
                                  g(x)
@end group
@group
(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
                       return (x + 99));
(%o2) g(x) ::= block(print("x + 99 is equal to", x), 
                                                  return(x + 99))
@end group
@group
(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
                       return (x - 99));
(%o3) h(x) ::= block(print("x - 99 is equal to", x), 
                                                  return(x - 99))
@end group
@group
(%i4) macroexpansion: false;
(%o4)                         false
@end group
@group
(%i5) f (a * b);
x - 99 is equal to x 
x + 99 is equal to x 
                            a b - 99
(%o5)                       --------
                            a b + 99
@end group
@group
(%i6) dispfun (f);
                                  h(x)
(%t6)                     f(x) := ----
                                  g(x)

(%o6)                         [%t6]
@end group
@group
(%i7) f (a * b);
x - 99 is equal to x 
x + 99 is equal to x 
                            a b - 99
(%o7)                       --------
                            a b + 99
@end group
@end example

When @code{macroexpansion} is @code{expand},
a macro function is called once,
and the calling expression is not modified.

@c ===beg===
@c f (x) := h (x) / g (x);
@c g (x) ::= block (print ("x + 99 is equal to", x), 
@c                        return (x + 99));
@c h (x) ::= block (print ("x - 99 is equal to", x), 
@c                        return (x - 99));
@c macroexpansion: expand;
@c f (a * b);
@c dispfun (f);
@c f (a * b);
@c ===end===
@example
@group
(%i1) f (x) := h (x) / g (x);
                                  h(x)
(%o1)                     f(x) := ----
                                  g(x)
@end group
@group
(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
                       return (x + 99));
(%o2) g(x) ::= block(print("x + 99 is equal to", x), 
                                                  return(x + 99))
@end group
@group
(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
                       return (x - 99));
(%o3) h(x) ::= block(print("x - 99 is equal to", x), 
                                                  return(x - 99))
@end group
@group
(%i4) macroexpansion: expand;
(%o4)                        expand
@end group
@group
(%i5) f (a * b);
x - 99 is equal to x 
x + 99 is equal to x 
                            a b - 99
(%o5)                       --------
                            a b + 99
@end group
@group
(%i6) dispfun (f);
                      mmacroexpanded(x - 99, h(x))
(%t6)         f(x) := ----------------------------
                      mmacroexpanded(x + 99, g(x))

(%o6)                         [%t6]
@end group
@group
(%i7) f (a * b);
                            a b - 99
(%o7)                       --------
                            a b + 99
@end group
@end example

When @code{macroexpansion} is @code{displace},
a macro function is called once,
and the calling expression is modified.

@c ===beg===
@c f (x) := h (x) / g (x);
@c g (x) ::= block (print ("x + 99 is equal to", x), 
@c                        return (x + 99));
@c h (x) ::= block (print ("x - 99 is equal to", x), 
@c                        return (x - 99));
@c macroexpansion: displace;
@c f (a * b);
@c dispfun (f);
@c f (a * b);
@c ===end===
@example
@group
(%i1) f (x) := h (x) / g (x);
                                  h(x)
(%o1)                     f(x) := ----
                                  g(x)
@end group
@group
(%i2) g (x) ::= block (print ("x + 99 is equal to", x),
                       return (x + 99));
(%o2) g(x) ::= block(print("x + 99 is equal to", x), 
                                                  return(x + 99))
@end group
@group
(%i3) h (x) ::= block (print ("x - 99 is equal to", x),
                       return (x - 99));
(%o3) h(x) ::= block(print("x - 99 is equal to", x), 
                                                  return(x - 99))
@end group
@group
(%i4) macroexpansion: displace;
(%o4)                       displace
@end group
@group
(%i5) f (a * b);
x - 99 is equal to x 
x + 99 is equal to x 
                            a b - 99
(%o5)                       --------
                            a b + 99
@end group
@group
(%i6) dispfun (f);
                                 x - 99
(%t6)                    f(x) := ------
                                 x + 99

(%o6)                         [%t6]
@end group
@group
(%i7) f (a * b);
                            a b - 99
(%o7)                       --------
                            a b + 99
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@category{Global flags}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{mode_declare}
@anchor{modedeclare}
@deffn {Function} mode_declare (@var{y_1}, @var{mode_1}, @dots{}, @var{y_n}, @var{mode_n})
@deffnx {Function} modedeclare (@var{y_1}, @var{mode_1}, @dots{}, @var{y_n}, @var{mode_n})

A @code{mode_declare} informs the compiler which type (lisp programmers name the type:
``mode'') a function parameter or its return value will be of. This can greatly
boost the efficiency of the code the compiler generates: Without knowing the type of
all variables and knowing the return value of all functions a function uses
in advance very generic (and thus potentially slow) code needs to be generated.

The arguments of @code{mode_declare} are pairs consisting of a variable (or a list
of variables all having the same mode) and a mode. Available modes (``types'') are:
@example
array            an declared array (see the detailed description below)
boolean          true or false
integer          integers (including arbitrary-size integers)
fixnum           integers (excluding arbitrary-size integers)
float            machine-size floating-point numbers
real             machine-size floating-point or integer
number           Numbers
any              any kind of object (useful for arrays of any)
@end example

A function parameter named @code{a} can be declared as an array filled with elements
of the type @code{t} the following way:
@example
mode_declare (a, array(t, dim1, dim2, ...))
@end example
If none of the elements of the array @code{a} needs to be checked if it still doesn't
contain a value additional code can be omitted by declaring this fact, too:
@example
mode_declare (a, array (t, complete, dim1, dim2, ...))
@end example
The @code{complete} has no effect if all array elements are of the type
@code{fixnum} or @code{float}: Machine-sized numbers inevitably contain a value
(and will automatically be initialized to 0 in most lisp implementations).

Another way to tell that all entries of the array @code{a} are of the type
(``mode'') @code{m} and have been assigned a value to would be:
@example
mode_declare (completearray (a), m))
@end example

Numeric code using arrays might run faster still if the size of the array is
known at compile time, as well, as in:
@example
mode_declare (completearray (a [10, 10]), float)
@end example
for a floating point number array named @code{a} which is 10 x 10.

@code{mode_declare} also can be used in order to declare the type of the result
of a function. In this case the function compilation needs to be preceded by
another @code{mode_declare} statement. For example the expression,
@example
mode_declare ([function (f_1, f_2, ...)], fixnum)
@end example
declares that the values returned by @code{f_1}, @code{f_2}, @dots{} are
single-word integers.

@code{modedeclare} is a synonym for @code{mode_declare}.

If the type of function parameters and results doesn't match the declaration by
@code{mode_declare} the function may misbehave or a warning or an error might
occur, see @mrefcomma{mode_checkp} @mref{mode_check_errorp} and
@mrefdot{mode_check_warnp}

See @mref{mode_identity} for declaring the type of lists and @mref{define_variable} for
declaring the type of all global variables compiled code uses, as well.

Example:
@c ===beg===
@c square_float(f):=(
@c      mode_declare(f,float),
@c      f*f
@c  );
@c mode_declare([function(f)],float);
@c compile(square_float);
@c square_float(100.0);
@c ===end===
@example
@group
(%i1) square_float(f):=(
     mode_declare(f,float),
     f*f
 );
(%o1)   square_float(f) := (mode_declare(f, float), f f)
@end group
@group
(%i2) mode_declare([function(f)],float);
(%o2)                    [[function(f)]]
@end group
@group
(%i3) compile(square_float);
(%o3)                    [square_float]
@end group
@group
(%i4) square_float(100.0);
(%o4)                        10000.0
@end group
@end example


@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c NEEDS MORE EXAMPLES?

@c -----------------------------------------------------------------------------
@anchor{mode_checkp}
@defvr {Option variable} mode_checkp
Default value: @code{true}

When @code{mode_checkp} is @code{true}, @mref{mode_declare} does not only define
which type a variable will be of so the compiler can generate more efficient code,
but will also create a runtime warning if the variable isn't of the variable type
the code was compiled to deal with.

@c ===beg===
@c mode_checkp:true;
@c square(f):=(
@c          mode_declare(f,float),
@c          f^2);
@c      compile(square);
@c      square(2.3);
@c      square(4);
@c ===end===
@example
@group
(%i1) mode_checkp:true;
(%o1)                         true
@end group
@group
(%i2) square(f):=(
    mode_declare(f,float),
    f^2);
                                                   2
(%o2)       square(f) := (mode_declare(f, float), f )
@end group
@group
(%i3) compile(square);
(%o3)                       [square]
@end group
@group
(%i4) square(2.3);
(%o4)                   5.289999999999999
@end group
@group
(%i5) square(4);
Maxima encountered a Lisp error:

 The value
   4
 is not of type
   DOUBLE-FLOAT
 when binding $F

Automatically continuing.
To enable the Lisp debugger set *debugger-hook* to nil.
@end group
@end example

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{mode_check_errorp}
@defvr {Option variable} mode_check_errorp
Default value: @code{false}

When @code{mode_check_errorp} is @code{true}, @code{mode_declare} calls
error.
@c NEED SOME EXAMPLES HERE.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{mode_check_warnp}
@defvr {Option variable} mode_check_warnp
Default value: @code{true}

@c WHAT DOES THIS MEAN ??
When @code{mode_check_warnp} is @code{true}, mode errors are
described.
@c NEED SOME EXAMPLES HERE.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c NEEDS AN EXAMPLE FOR DECLARING THE RETURN TYPE

@c -----------------------------------------------------------------------------
@anchor{mode_identity}
@deffn {Function} mode_identity (@var{arg_1}, @var{arg_2})

@code{mode_identity} works similar to @mref{mode_declare}, but is used for
informing the compiler that a thing like a @code{macro} or a list operation
will only return a specific type of object. The purpose of doing so is that
maxima supports many objects: Machine integers, arbitrary length integers,
equations, machine floats, big floats, which means that for everything that
deals with return values of operations that can result in any object the
compiler needs to output generic (and therefore potentially slow) code.

The first argument to @code{mode_identity} is the type of return value
something will return (for possible types see @mref{mode_declare}).
(i.e., one of @code{float}, @code{fixnum}, @code{number},
The second argument is the expression that will return an object of this
type.

If the the return value of this expression is of a type the code was not
compiled for error or warning is signalled.
@c ARE THE MODE_DECLARE VARIABLES FOR TURNING OFF THIS ERROR OR WARNING
@c EFFECTIVE HERE, TOO?

If you knew that @code{first (l)} returned a number then you could write

@example
@code{mode_identity (number, first (l))}.
@end example
However, if you need this construct more often it would be more efficient
to define a function that returns a number fist:
@example
firstnumb (x) ::= buildq ([x], mode_identity (number, first(x)));
compile(firstnumb)
@end example
@code{firstnumb} now can be used every time you need the first element
of a list that is guaranteed to be filled with numbers.
@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{remfunction}
@deffn  {Function} remfunction @
@fname{remfunction} (@var{f_1}, @dots{}, @var{f_n}) @
@fname{remfunction} (all)

Unbinds the function definitions of the symbols @var{f_1}, @dots{}, @var{f_n}.
The arguments may be the names of ordinary functions (created by @mref{:=} or
@mref{define}) or macro functions (created by @mref{::=}).

@code{remfunction (all)} unbinds all function definitions.

@code{remfunction} quotes its arguments.

@code{remfunction} returns a list of the symbols for which the function
definition was unbound.  @code{false} is returned in place of any symbol for
which there is no function definition.

@code{remfunction} does not apply to @mref{memoizing functions} or subscripted functions.
@mref{remarray} applies to those types of functions.

@opencatbox{Categories:}
@category{Function definition}
@closecatbox
@end deffn

@c NEEDS MORE WORK !!!

@c -----------------------------------------------------------------------------
@anchor{savedef}
@defvr {Option variable} savedef
Default value: @code{true}

When @code{savedef} is @code{true}, the Maxima version of a user function is
preserved when the function is translated.  This permits the definition to be
displayed by @code{dispfun} and allows the function to be edited.

When @code{savedef} is @code{false}, the names of translated functions are
removed from the @code{functions} list.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{translate}
@deffn  {Function} translate @
@fname{translate} (@var{f_1}, @dots{}, @var{f_n}) @
@fname{translate} (functions) @
@fname{translate} (all)

Translates the user-defined functions @var{f_1}, @dots{}, @var{f_n} from the
Maxima language into Lisp and evaluates the Lisp translations.
Typically the translated functions run faster than the originals.

@code{translate (all)} or @code{translate (functions)} translates all
user-defined functions.

Functions to be translated should include a call to @code{mode_declare} at the
beginning when possible in order to produce more efficient code.  For example:

@example
f (x_1, x_2, ...) := block ([v_1, v_2, ...],
    mode_declare (v_1, mode_1, v_2, mode_2, ...), ...)
@end example

@noindent
where the @var{x_1}, @var{x_2}, @dots{}  are the parameters to the function and
the @var{v_1}, @var{v_2}, @dots{} are the local variables.

The names of translated functions are removed from the @code{functions} list
if @code{savedef} is @code{false} (see below) and are added to the @code{props}
lists.

Functions should not be translated unless they are fully debugged.

Expressions are assumed simplified; if they are not, correct but non-optimal
code gets generated.  Thus, the user should not set the @code{simp} switch to
@code{false} which inhibits simplification of the expressions to be translated.

The switch @code{translate}, if @code{true}, causes automatic
translation of a user's function to Lisp.

Note that translated
functions may not run identically to the way they did before
translation as certain incompatibilities may exist between the Lisp
and Maxima versions.  Principally, the @code{rat} function with more than
one argument and the @code{ratvars} function should not be used if any
variables are @code{mode_declare}'d canonical rational expressions (CRE).
Also the @code{prederror: false} setting
will not translate.
@c WHAT ABOUT % AND %% ???

@code{savedef} - if @code{true} will cause the Maxima version of a user
function to remain when the function is @code{translate}'d.  This permits the
definition to be displayed by @code{dispfun} and allows the function to be
edited.

@code{transrun} - if @code{false} will cause the interpreted version of all
functions to be run (provided they are still around) rather than the
translated version.

The result returned by @code{translate} is a list of the names of the
functions translated.

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{translate_file}
@deffn  {Function} translate_file @
@fname{translate_file} (@var{maxima_filename}) @
@fname{translate_file} (@var{maxima_filename}, @var{lisp_filename})

Translates a file of Maxima code into a file of Lisp code.
@code{translate_file} returns a list of three filenames:
the name of the Maxima file, the name of the Lisp file, and the name of file
containing additional information about the translation.
@code{translate_file} evaluates its arguments.

@code{translate_file ("foo.mac"); load("foo.LISP")} is the same as the command
@code{batch ("foo.mac")} except for certain restrictions, the use of
@code{'@w{}'} and @code{%}, for example.
@c FIGURE OUT WHAT THE RESTRICTIONS ARE AND STATE THEM

@code{translate_file (@var{maxima_filename})} translates a Maxima file
@var{maxima_filename} into a similarly-named Lisp file.
For example, @code{foo.mac} is translated into @code{foo.LISP}.
The Maxima filename may include a directory name or names,
in which case the Lisp output file is written
to the same directory from which the Maxima input comes.

@code{translate_file (@var{maxima_filename}, @var{lisp_filename})} translates
a Maxima file @var{maxima_filename} into a Lisp file @var{lisp_filename}.
@code{translate_file} ignores the filename extension, if any, of
@code{lisp_filename}; the filename extension of the Lisp output file is always
@code{LISP}.  The Lisp filename may include a directory name or names,
in which case the Lisp output file is written to the specified directory.

@code{translate_file} also writes a file of translator warning
messages of various degrees of severity.
The filename extension of this file is @code{UNLISP}.
This file may contain valuable information, though possibly obscure,
for tracking down bugs in translated code.
The @code{UNLISP} file is always written
to the same directory from which the Maxima input comes.

@code{translate_file} emits Lisp code which causes
some declarations and definitions to take effect as soon
as the Lisp code is compiled.
See @code{compile_file} for more on this topic.

@c CHECK ALL THESE AND SEE WHICH ONES ARE OBSOLETE
See also 
@flushleft
@code{tr_array_as_ref}
@c tr_bind_mode_hook EXISTS BUT IT APPEARS TO BE A GROTESQUE UNDOCUMENTED HACK
@c WE DON'T WANT TO MENTION IT
@c @code{tr_bind_mode_hook}, 
@mrefcomma{tr_bound_function_applyp}
@c tr_exponent EXISTS AND WORKS AS ADVERTISED IN src/troper.lisp
@c NOT OTHERWISE DOCUMENTED; ITS EFFECT SEEMS TOO WEAK TO MENTION
@code{tr_exponent}
@mrefcomma{tr_file_tty_messagesp}
@mrefcomma{tr_float_can_branch_complex}
@mrefcomma{tr_function_call_default}
@mrefcomma{tr_numer}
@mrefcomma{tr_optimize_max_loop}
@mrefcomma{tr_state_vars}
@mrefcomma{tr_warnings_get}
@c Not documented
@code{tr_warn_bad_function_calls}
@mrefcomma{tr_warn_fexpr} 
@mrefcomma{tr_warn_meval}
@mrefcomma{tr_warn_mode}
@mrefcomma{tr_warn_undeclared}
and @mrefdot{tr_warn_undefined_variable}
@end flushleft

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{transrun}
@defvr {Option variable} transrun
Default value: @code{true}

When @code{transrun} is @code{false} will cause the interpreted
version of all functions to be run (provided they are still around)
rather than the translated version.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c IN WHAT CONTEXT IS tr_array_as_ref: false APPROPRIATE ??? NOT SEEING THE USEFULNESS HERE.
@c ALSO, I GUESS WE SHOULD HAVE AN ITEM FOR translate_fast_arrays, ANOTHER CONFUSING FLAG ...

@c -----------------------------------------------------------------------------
@anchor{tr_array_as_ref}
@defvr {Option variable} tr_array_as_ref
Default value: @code{true}

If @code{translate_fast_arrays} is @code{false}, array references in Lisp code
emitted by @code{translate_file} are affected by @code{tr_array_as_ref}.
When @code{tr_array_as_ref} is @code{true},
array names are evaluated,
otherwise array names appear as literal symbols in translated code.

@code{tr_array_as_ref} has no effect if @code{translate_fast_arrays} is
@code{true}.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c WHY IS THIS FLAG NEEDED ??? UNDER WHAT CIRCUMSTANCES CAN TRANSLATION
@c OF A BOUND VARIABLE USED AS A FUNCTION GO WRONG ???

@c -----------------------------------------------------------------------------
@anchor{tr_bound_function_applyp}
@defvr {Option variable} tr_bound_function_applyp
Default value: @code{true}

When @code{tr_bound_function_applyp} is @code{true} and @code{tr_function_call_default}
is @code{general}, if a bound variable (such as a function argument) is found being
used as a function then Maxima will rewrite that function call using @code{apply} and
print a warning message.

For example, if @code{g} is defined by @code{g(f,x) := f(x+1)} then translating
@code{g} will cause Maxima to print a warning and rewrite @code{f(x+1)} as
@code{apply(f,[x+1])}.

@c ===beg===
@c f (x) := x^2$
@c g (f) := f (3)$
@c tr_bound_function_applyp : true$
@c translate (g)$
@c g (lambda ([x], x));
@c tr_bound_function_applyp : false$
@c translate (g)$
@c g (lambda ([x], x));
@c ===end===
@example
(%i1) f (x) := x^2$
(%i2) g (f) := f (3)$
(%i3) tr_bound_function_applyp : true$
@group
(%i4) translate (g)$
warning: f is a bound variable in f(3), but it is used as a function.
note: instead I'll translate it as: apply(f,[3])
@end group
@group
(%i5) g (lambda ([x], x));
(%o5)                           3
@end group
(%i6) tr_bound_function_applyp : false$
(%i7) translate (g)$
@group
(%i8) g (lambda ([x], x));
(%o8)                           9
@end group
@end example

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_file_tty_messagesp}
@defvr {Option variable} tr_file_tty_messagesp
Default value: @code{false}

When @code{tr_file_tty_messagesp} is @code{true}, messages generated by
@code{translate_file} during translation of a file are displayed on the console
and inserted into the UNLISP file.  When @code{false}, messages about
translation of the file are only inserted into the UNLISP file.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_float_can_branch_complex}
@defvr {Option variable} tr_float_can_branch_complex
Default value: @code{true}

Tells the Maxima-to-Lisp translator to assume that the functions 
@code{acos}, @code{asin}, @code{asec}, @code{acsc}, @code{acosh},
@code{asech}, @code{atanh}, @code{acoth}, @code{log} and @code{sqrt}
can return complex results.

When it is @code{true} then @code{acos(x)} is of mode @code{any}
even if @code{x} is of mode @code{float} (as set by @code{mode_declare}).
When @code{false} then @code{acos(x)} is of mode
@code{float} if and only if @code{x} is of mode @code{float}.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_function_call_default}
@defvr {Option variable} tr_function_call_default
Default value: @code{general}

@code{false} means give up and call @code{meval}, @code{expr} means assume Lisp
fixed arg function.  @code{general}, the default gives code good for
@code{mexprs} and @code{mlexprs} but not @code{macros}.  @code{general} assures
variable bindings are correct in compiled code.  In @code{general} mode, when
translating F(X), if F is a bound variable, then it assumes that
@code{apply (f, [x])} is meant, and translates a such, with appropriate warning.
There is no need to turn this off.  With the default settings, no warning
messages implies full compatibility of translated and compiled code with the
Maxima interpreter.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_numer}
@defvr {Option variable} tr_numer
Default value: @code{false}

When @code{tr_numer} is @code{true}, @code{numer} properties are used for
atoms which have them, e.g. @code{%pi}.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_optimize_max_loop}
@defvr {Option variable} tr_optimize_max_loop
Default value: 100

@code{tr_optimize_max_loop} is the maximum number of times the
macro-expansion and optimization pass of the translator will loop in
considering a form.  This is to catch macro expansion errors, and
non-terminating optimization properties.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c ARE ANY OF THESE OBSOLETE ??

@c -----------------------------------------------------------------------------
@anchor{tr_state_vars}
@defvr {System variable} tr_state_vars
Default value:
@example
[translate_fast_arrays, tr_function_call_default, tr_bound_function_applyp,
tr_array_as_ref, tr_numer, tr_float_can_branch_complex, define_variable]
@end example

The list of the switches that affect the form of the
translated output.
@c DOES THE GENERAL USER REALLY CARE ABOUT DEBUGGING THE TRANSLATOR ???
@c I doubt it.
This information is useful to system people when
trying to debug the translator.  By comparing the translated product
to what should have been produced for a given state, it is possible to
track down bugs.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c tr_warnings_get EXISTS AND FUNCTIONS AS ADVERTISED (SORT OF) -- RETURNS *tr-runtime-warned*
@c WHICH HAS ONLY A FEW KINDS OF WARNINGS PUSHED ONTO IT; IT'S CERTAINLY NOT COMPREHENSIVE
@c DO WE REALLY NEED THIS SLIGHTLY WORKING FUNCTION ??

@c -----------------------------------------------------------------------------
@anchor{tr_warnings_get}
@deffn {Function} tr_warnings_get ()

Prints a list of warnings which have been given by
the translator during the current translation.

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@defvr {Option variable} tr_warn_bad_function_calls
Default value: @code{true}

- Gives a warning when
when function calls are being made which may not be correct due to
improper declarations that were made at translate time.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_warn_fexpr}
@defvr {Option variable} tr_warn_fexpr
Default value: @code{compfile}

- Gives a warning if any FEXPRs are
encountered.  FEXPRs should not normally be output in translated code,
all legitimate special program forms are translated.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_warn_meval}
@defvr {Option variable} tr_warn_meval
Default value: @code{compfile}

- Gives a warning if the function @code{meval} gets called.  If @code{meval} is
called that indicates problems in the translation.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_warn_mode}
@defvr {Option variable} tr_warn_mode
Default value: @code{all}

- Gives a warning when variables are
assigned values inappropriate for their mode.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_warn_undeclared}
@defvr {Option variable} tr_warn_undeclared
Default value: @code{compile}

- Determines when to send
warnings about undeclared variables to the TTY.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{tr_warn_undefined_variable}
@defvr {Option variable} tr_warn_undefined_variable
Default value: @code{all}

- Gives a warning when
undefined global variables are seen.

@opencatbox{Categories:}
@category{Translation flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{compile_file}
@deffn  {Function} compile_file @
@fname{compile_file} (@var{filename}) @
@fname{compile_file} (@var{filename}, @var{compiled_filename}) @
@fname{compile_file} (@var{filename}, @var{compiled_filename}, @var{lisp_filename})

Translates the Maxima file @var{filename} into Lisp, and executes the Lisp compiler.
The compiled code is not loaded into Maxima.

@code{compile_file} returns a list of the names of four files: the original
Maxima file, the Lisp translation, notes on translation, and the compiled code.
If the compilation fails, the fourth item is @code{false}.

Some declarations and definitions take effect as soon
as the Lisp code is compiled (without loading the compiled code).
These include functions defined with the @code{:=} operator,
macros define with the @code{::=} operator,
@c HEDGE -- DON'T KNOW IF THERE IS ANOTHER WAY
@code{alias}, @code{declare},
@code{define_variable},  @code{mode_declare},
and 
@code{infix}, @code{matchfix},
@code{nofix}, @code{postfix}, @code{prefix},
and @code{compfile}.

Assignments and function calls are not evaluated until the compiled code is
loaded.  In particular, within the Maxima file, assignments to the translation
flags (@code{tr_numer}, etc.) have no effect on the translation.

@c @code{compile_file} may mistake warnings for errors and
@c return @code{false} as the name of the compiled code when, in fact,
@c the compilation succeeded. This is a bug. 
@c REPORTED AS SOURCEFORGE BUG # 1103722.

@var{filename} may not contain @code{:lisp} statements.

@code{compile_file} evaluates its arguments.

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION

@c -----------------------------------------------------------------------------
@anchor{declare_translated}
@deffn {Function} declare_translated (@var{f_1}, @var{f_2}, @dots{})

When translating a file of Maxima code
to Lisp, it is important for the translator to know which functions it
sees in the file are to be called as translated or compiled functions,
and which ones are just Maxima functions or undefined.  Putting this
declaration at the top of the file, lets it know that although a symbol
does which does not yet have a Lisp function value, will have one at
call time.  @code{(MFUNCTION-CALL fn arg1 arg2 ...)} is generated when
the translator does not know @code{fn} is going to be a Lisp function.

@opencatbox{Categories:}
@category{Translation and compilation}
@closecatbox
@end deffn