File: Program.texi

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (1347 lines) | stat: -rw-r--r-- 46,724 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
@menu
* Lisp and Maxima::
* Garbage Collection::
* Introduction to Program Flow::
* Functions and Variables for Program Flow::
@end menu

@c -----------------------------------------------------------------------------
@node Lisp and Maxima, Garbage Collection, Program Flow, Program Flow
@section Lisp and Maxima
@c -----------------------------------------------------------------------------

Maxima is a fairly complete programming language. But since it is written in
Lisp, it additionally can provide easy access to Lisp functions and variables
from Maxima and vice versa.  Lisp and Maxima symbols are distinguished by a
naming convention.  A Lisp symbol which begins with a dollar sign @code{$}
corresponds to a Maxima symbol without the dollar sign.

@c NEED TO MENTION THIS OR IS IT JUST CLUTTERING ??
@c This includes special Maxima variables such as @code{%} and input and output
@c labels, which appear as @code{$%}, @code{$%i1}, @code{$%o1}, etc., in Lisp.

A Maxima symbol which begins with a question mark @code{?} corresponds to a Lisp
symbol without the question mark.  For example, the Maxima symbol @code{foo}
corresponds to the Lisp symbol @code{$FOO}, while the Maxima symbol @code{?foo}
corresponds to the Lisp symbol @code{FOO}.  Note that @code{?foo} is written
without a space between @code{?} and @code{foo}; otherwise it might be mistaken
for @code{describe ("foo")}.

Hyphen @code{-}, asterisk @code{*}, or other special characters in Lisp symbols
must be escaped by backslash @code{\} where they appear in Maxima code.  For
example, the Lisp identifier @code{*foo-bar*} is written @code{?\*foo\-bar\*}
in Maxima.

Lisp code may be executed from within a Maxima session.  A single line of Lisp
(containing one or more forms) may be executed by the special command
@code{:lisp}.  For example,

@example
(%i1) :lisp (foo $x $y)
@end example

@noindent
calls the Lisp function @code{foo} with Maxima variables @code{x} and @code{y}
as arguments.  The @code{:lisp} construct can appear at the interactive prompt
or in a file processed by @mref{batch} or @mrefcomma{demo} but not in a file
processed by @mrefcomma{load} @mrefcomma{batchload}@w{}
@mrefcomma{translate_file} or @mrefdot{compile_file}

The function @mref{to_lisp} opens an interactive Lisp session.
Entering @code{(to-maxima)} closes the Lisp session and returns to Maxima.
@c I DON'T EVEN WANT TO MENTION USING CTRL-C TO OPEN A LISP SESSION.
@c (1) IT TAKES EXTRA SET UP TO GET STARTED NAMELY :lisp (setq *debugger-hook* nil)
@c (2) IT GETS SCREWED UP EASILY -- TYPE SOMETHING WRONG AND YOU CAN'T GET BACK TO MAXIMA
@c (3) IT DOESN'T OFFER FUNCTIONALITY NOT PRESENT IN THE to_lisp() SESSION

Lisp functions and variables which are to be visible in Maxima as functions and
variables with ordinary names (no special punctuation) must have Lisp names
beginning with the dollar sign @code{$}.

Maxima is case-sensitive, distinguishing between lowercase and uppercase letters
in identifiers.  There are some rules governing the translation of names between
Lisp and Maxima.

@enumerate
@item
A Lisp identifier not enclosed in vertical bars corresponds to a Maxima
identifier in lowercase.  Whether the Lisp identifier is uppercase, lowercase,
or mixed case, is ignored.  E.g., Lisp @code{$foo}, @code{$FOO}, and @code{$Foo}
all correspond to Maxima @code{foo}.  But this is because @code{$foo},
@code{$FOO} and @code{$Foo} are converted by the Lisp reader by default to the
Lisp symbol @code{$FOO}.
@item
A Lisp identifier which is all uppercase or all lowercase and enclosed in
vertical bars corresponds to a Maxima identifier with case reversed.  That is,
uppercase is changed to lowercase and lowercase to uppercase.  E.g., Lisp
@code{|$FOO|} and @code{|$foo|} correspond to Maxima @code{foo} and @code{FOO},
respectively.
@item
A Lisp identifier which is mixed uppercase and lowercase and enclosed in
vertical bars corresponds to a Maxima identifier with the same case.  E.g.,
Lisp @code{|$Foo|} corresponds to Maxima @code{Foo}.
@end enumerate

The @code{#$} Lisp macro allows the use of Maxima expressions in Lisp code.
@code{#$@var{expr}$} expands to a Lisp expression equivalent to the Maxima
expression @var{expr}.

@example
(msetq $foo #$[x, y]$)
@end example

@noindent
This has the same effect as entering

@example
(%i1) foo: [x, y];
@end example

@noindent
The Lisp function @code{displa} prints an expression in Maxima format.

@example
(%i1) :lisp #$[x, y, z]$ 
((MLIST SIMP) $X $Y $Z)
(%i1) :lisp (displa '((MLIST SIMP) $X $Y $Z))
[x, y, z]
NIL
@end example

Functions defined in Maxima are not ordinary Lisp functions.  The Lisp function
@code{mfuncall} calls a Maxima function.  For example:

@example
(%i1) foo(x,y) := x*y$
(%i2) :lisp (mfuncall '$foo 'a 'b)
((MTIMES SIMP) A B)
@end example

Some Lisp functions are shadowed in the Maxima package, namely the following.

@verbatim
   complement     continue      //
   float          functionp     array
   exp            listen        signum
   atan           asin          acos
   asinh          acosh         atanh
   tanh           cosh          sinh
   tan            break         gcd
@end verbatim

@opencatbox{Categories:}
@category{Programming}
@closecatbox

@c -----------------------------------------------------------------------------
@node Garbage Collection, Introduction to Program Flow, Lisp and Maxima, Program Flow
@section Garbage Collection
@c -----------------------------------------------------------------------------

One of the advantages of using lisp is that it uses ``Garbage Collection''. In other
words it automatically takes care of freeing memory occupied for example of
intermediate results that were used during symbolic computation.

Garbage Collection avoids many errors frequently found in C programs (memory
being freed too early, multiple times or not at all).

@c -----------------------------------------------------------------------------

@anchor{garbage_collect}
@deffn {Function} garbage_collect ()

Tries to manually trigger the lisp's garbage collection. This rarely is necessary
as the lisp will employ an excellent algorithm for determining when to start
garbage collection.

If maxima knows how to do manually trigger the garbage collection for the
current lisp @code{garbage_collect} returns @code{true}, else @code{false}.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@node Introduction to Program Flow, Functions and Variables for Program Flow, Garbage Collection, Program Flow
@section Introduction to Program Flow
@c -----------------------------------------------------------------------------

Maxima provides a @code{do} loop for iteration, as well as more primitive
constructs such as @code{go}.

@c end concepts Program Flow

@c -----------------------------------------------------------------------------
@node Functions and Variables for Program Flow,  , Introduction to Program Flow, Program Flow
@section Functions and Variables for Program Flow
@c -----------------------------------------------------------------------------

@c -----------------------------------------------------------------------------
@anchor{backtrace}
@deffn  {Function} backtrace @
@fname{backtrace} () @
@fname{backtrace} (@var{n})

Prints the call stack, that is, the list of functions which
called the currently active function.

@code{backtrace ()} prints the entire call stack.

@code{backtrace (@var{n})} prints the @var{n} most recent 
functions, including the currently active function.

@c IS THIS STATEMENT REALLY NEEDED ?? 
@c (WHY WOULD ANYONE BELIEVE backtrace CANNOT BE CALLED OUTSIDE A DEBUGGING CONTEXT??)
@code{backtrace} can be called from a script, a function, or the interactive
prompt (not only in a debugging context).

Examples:

@itemize @bullet
@item
@code{backtrace ()} prints the entire call stack.

@example
(%i1) h(x) := g(x/7)$
(%i2) g(x) := f(x-11)$
(%i3) f(x) := e(x^2)$
(%i4) e(x) := (backtrace(), 2*x + 13)$
(%i5) h(10);
#0: e(x=4489/49)
#1: f(x=-67/7)
#2: g(x=10/7)
#3: h(x=10)
                              9615
(%o5)                         ----
                               49
@end example
@end itemize

@itemize @bullet
@item
@code{backtrace (@var{n})} prints the @var{n} most recent 
functions, including the currently active function.

@example
(%i1) h(x) := (backtrace(1), g(x/7))$
(%i2) g(x) := (backtrace(1), f(x-11))$
(%i3) f(x) := (backtrace(1), e(x^2))$
(%i4) e(x) := (backtrace(1), 2*x + 13)$
(%i5) h(10);
#0: h(x=10)
#0: g(x=10/7)
#0: f(x=-67/7)
#0: e(x=4489/49)
                              9615
(%o5)                         ----
                               49
@end example
@end itemize

@opencatbox{Categories:}
@category{Debugging}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{do}
@anchor{while}
@anchor{unless}
@anchor{for}
@anchor{from}
@anchor{thru}
@anchor{step}
@anchor{next}
@anchor{in}
@deffn {Special operator} do
@deffnx {Special operator} while
@deffnx {Special operator} unless
@deffnx {Special operator} for
@deffnx {Special operator} from
@deffnx {Special operator} thru
@deffnx {Special operator} step
@deffnx {Special operator} next
@deffnx {Special operator} in

The @code{do} statement is used for performing iteration. The general
form of the @code{do} statements maxima supports is:

@itemize @bullet
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
      thru @var{limit} do @var{body}}
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
      while @var{condition} do @var{body}}
@item
@code{for @var{variable}: @var{initial_value} step @var{increment}
      unless @var{condition} do @var{body}}
@item
@code{for @var{variable} in @var{list} do @var{body}}
@end itemize

If the loop is expected to generate a list as output the command
@mref{makelist} may be the appropriate command to use instead,
@xref{Performance considerations for Lists}.

@var{initial_value}, @var{increment}, @var{limit}, and @var{body} can be any
expression. @var{list} is a list.  If the increment is 1 then "@code{step 1}"
may be omitted; As always, if @code{body} needs to contain more than one command
these commands can be specified as a comma-separated list surrounded
by parenthesis or as a @mrefdot{block}
Due to its great generality the @code{do} statement will be described in two parts.
The first form of the @code{do} statement (which is shown in the first three
items above) is analogous to that used in
several other programming languages (Fortran, Algol, PL/I, etc.); then
the other features will be mentioned.

The execution of the @code{do} statement proceeds by first assigning
the @var{initial_value} to the @var{variable} (henceforth called the
control-variable).  Then: (1) If the control-variable has exceeded the
limit of a @code{thru} specification, or if the condition of the
@code{unless} is @code{true}, or if the condition of the @code{while}
is @code{false} then the @code{do} terminates.  (2) The @var{body} is
evaluated.  (3) The increment is added to the control-variable.  The
process from (1) to (3) is performed repeatedly until the termination
condition is satisfied.  One may also give several termination
conditions in which case the @code{do} terminates when any of them is
satisfied.

In general the @code{thru} test is satisfied when the control-variable
is greater than the @var{limit} if the @var{increment} was
non-negative, or when the control-variable is less than the
@var{limit} if the @var{increment} was negative.  The
@var{increment} and @var{limit} may be non-numeric expressions as
long as this inequality can be determined.  However, unless the
@var{increment} is syntactically negative (e.g. is a negative number)
at the time the @code{do} statement is input, Maxima assumes it will
be positive when the @code{do} is executed.  If it is not positive,
then the @code{do} may not terminate properly.

Note that the @var{limit}, @var{increment}, and termination condition are
evaluated each time through the loop.  Thus if any of these involve
much computation, and yield a result that does not change during all
the executions of the @var{body}, then it is more efficient to set a
variable to their value prior to the @code{do} and use this variable in the
@code{do} form.

The value normally returned by a @code{do} statement is the atom
@code{done}.  However, the function @code{return} may be used inside
the @var{body} to exit the @code{do} prematurely and give it any
desired value.  Note however that a @code{return} within a @code{do}
that occurs in a @code{block} will exit only the @code{do} and not the
@code{block}.  Note also that the @code{go} function may not be used
to exit from a @code{do} into a surrounding @code{block}.

The control-variable is always local to the @code{do} and thus any
variable may be used without affecting the value of a variable with
the same name outside of the @code{do}.  The control-variable is unbound
after the @code{do} terminates.

@example
(%i1) for a:-3 thru 26 step 7 do display(a)$
                             a = - 3

                              a = 4

                             a = 11

                             a = 18

                             a = 25
@end example

@c ===beg===
@c s: 0$
@c for i: 1 while i <= 10 do s: s+i;
@c s;
@c ===end===
@example
(%i1) s: 0$
(%i2) for i: 1 while i <= 10 do s: s+i;
(%o2)                         done
(%i3) s;
(%o3)                          55
@end example

Note that the condition @code{while i <= 10}
is equivalent to @code{unless i > 10} and also @code{thru 10}.

@c ===beg===
@c series: 1$
@c term: exp (sin (x))$
@c for p: 1 unless p > 7 do
@c     (term: diff (term, x)/p, 
@c      series: series + subst (x=0, term)*x^p)$
@c series;
@c ===end===
@example
(%i1) series: 1$
(%i2) term: exp (sin (x))$
(%i3) for p: 1 unless p > 7 do
          (term: diff (term, x)/p, 
           series: series + subst (x=0, term)*x^p)$
(%i4) series;
                  7    6     5    4    2
                 x    x     x    x    x
(%o4)            -- - --- - -- - -- + -- + x + 1
                 90   240   15   8    2
@end example

which gives 8 terms of the Taylor series for @code{e^sin(x)}.

@c ===beg===
@c poly: 0$
@c for i: 1 thru 5 do
@c     for j: i step -1 thru 1 do
@c         poly: poly + i*x^j$
@c poly;
@c guess: -3.0$
@c for i: 1 thru 10 do
@c     (guess: subst (guess, x, 0.5*(x + 10/x)),
@c     if abs (guess^2 - 10) < 0.00005 then return (guess));
@c ===end===
@example
(%i1) poly: 0$
(%i2) for i: 1 thru 5 do
          for j: i step -1 thru 1 do
              poly: poly + i*x^j$
(%i3) poly;
                  5      4       3       2
(%o3)          5 x  + 9 x  + 12 x  + 14 x  + 15 x
(%i4) guess: -3.0$
(%i5) for i: 1 thru 10 do
          (guess: subst (guess, x, 0.5*(x + 10/x)),
           if abs (guess^2 - 10) < 0.00005 then return (guess));
(%o5)                  - 3.162280701754386
@end example

This example computes the negative square root of 10 using the
Newton- Raphson iteration a maximum of 10 times.  Had the convergence
criterion not been met the value returned would have been @code{done}.

Instead of always adding a quantity to the control-variable one
may sometimes wish to change it in some other way for each iteration.
In this case one may use @code{next @var{expression}} instead of
@code{step @var{increment}}.  This will cause the control-variable to be set to
the result of evaluating @var{expression} each time through the loop.

@example
(%i6) for count: 2 next 3*count thru 20 do display (count)$
                            count = 2

                            count = 6

                           count = 18
@end example

@c UGH. DO WE REALLY NEED TO MENTION THIS??
As an alternative to @code{for @var{variable}: @var{value} ...do...}
the syntax @code{for @var{variable} from @var{value} ...do...}  may be
used.  This permits the @code{from @var{value}} to be placed after the
@code{step} or @code{next} value or after the termination condition.
If @code{from @var{value}} is omitted then 1 is used as the initial
value.

Sometimes one may be interested in performing an iteration where
the control-variable is never actually used.  It is thus permissible
to give only the termination conditions omitting the initialization
and updating information as in the following example to compute the
square-root of 5 using a poor initial guess.

@c ===beg===
@c x: 1000$
@c thru 20 do x: 0.5*(x + 5.0/x)$
@c x;
@c sqrt(5), numer;
@c ===end===
@example
(%i1) x: 1000$
(%i2) thru 20 do x: 0.5*(x + 5.0/x)$
(%i3) x;
(%o3)                   2.23606797749979
(%i4) sqrt(5), numer;
(%o4)                   2.23606797749979
@end example

If it is desired one may even omit the termination conditions entirely
and just give @code{do @var{body}} which will continue to evaluate the
@var{body} indefinitely.  In this case the function @code{return}
should be used to terminate execution of the @code{do}.

@c ===beg===
@c newton (f, x):= ([y, df, dfx], df: diff (f ('x), 'x),
@c     do (y: ev(df), x: x - f(x)/y,
@c         if abs (f (x)) < 5e-6 then return (x)))$
@c sqr (x) := x^2 - 5.0$
@c newton (sqr, 1000);
@c ===end===
@example
(%i1) newton (f, x):= ([y, df, dfx], df: diff (f ('x), 'x),
          do (y: ev(df), x: x - f(x)/y, 
              if abs (f (x)) < 5e-6 then return (x)))$
(%i2) sqr (x) := x^2 - 5.0$
(%i3) newton (sqr, 1000);
(%o3)                   2.236068027062195
@end example

@c DUNNO IF WE NEED THIS LEVEL OF DETAIL; THIS ARTICLE IS GETTING PRETTY LONG
(Note that @code{return}, when executed, causes the current value of @code{x} to
be returned as the value of the @code{do}.  The @code{block} is exited and this
value of the @code{do} is returned as the value of the @code{block} because the
@code{do} is the last statement in the block.)

One other form of the @code{do} is available in Maxima.  The syntax is:

@example
for @var{variable} in @var{list} @var{end_tests} do @var{body}
@end example

The elements of @var{list} are any expressions which will successively
be assigned to the @code{variable} on each iteration of the
@var{body}.  The optional termination tests @var{end_tests} can be
used to terminate execution of the @code{do}; otherwise it will
terminate when the @var{list} is exhausted or when a @code{return} is
executed in the @var{body}.  (In fact, @code{list} may be any
non-atomic expression, and successive parts are taken.)

@example
(%i1)  for f in [log, rho, atan] do ldisp(f(1))$
(%t1)                                  0
(%t2)                                rho(1)
                                     %pi
(%t3)                                 ---
                                      4
(%i4) ev(%t3,numer);
(%o4)                             0.78539816
@end example

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{errcatch}
@deffn {Function} errcatch (@var{expr_1}, @dots{}, @var{expr_n})

Evaluates @var{expr_1}, @dots{}, @var{expr_n} one by one and
returns @code{[@var{expr_n}]} (a list) if no error occurs.  If an
error occurs in the evaluation of any argument, @code{errcatch} 
prevents the error from propagating and
returns the empty list @code{[]} without evaluating any more arguments.

@code{errcatch}
is useful in @code{batch} files where one suspects an error might occur which
would terminate the @code{batch} if the error weren't caught.

See also @mrefdot{errormsg}

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{error}
@deffn  {Function} error (@var{expr_1}, @dots{}, @var{expr_n})
@deffnx {System variable} error

Evaluates and prints @var{expr_1}, @dots{}, @var{expr_n},
and then causes an error return to top level Maxima
or to the nearest enclosing @code{errcatch}.

The variable @code{error} is set to a list describing the error.
The first element of @code{error} is a format string, which merges all the
strings among the arguments @var{expr_1}, @dots{}, @var{expr_n},
and the remaining elements are the values of any non-string arguments.

@code{errormsg()} formats and prints @code{error}.
This is effectively reprinting the most recent error message.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{warning}
@deffn  {Function} warning (@var{expr_1}, @dots{}, @var{expr_n})

Evaluates and prints @var{expr_1}, @dots{}, @var{expr_n},
as a warning message that is formatted in a standard way so a maxima front-end
may be able to recognize the warning and to format it accordingly.

The function @code{warning} always returns false.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{error_size}
@defvr {Option variable} error_size
Default value: 60

@code{error_size} modifies error messages according to the size of expressions
which appear in them.  If the size of an expression (as determined by the Lisp
function @code{ERROR-SIZE}) is greater than @code{error_size}, the expression is
replaced in the message by a symbol, and the symbol is assigned the expression.
The symbols are taken from the list @mref{error_syms}.

Otherwise, the expression is smaller than @code{error_size}, and the expression
is displayed in the message.

See also @mref{error} and @mrefdot{error_syms}

Example:
@c OUTPUT GENERATED BY THE FOLLOWING
@c U: (C^D^E + B + A)/(cos(X-1) + 1)$
@c error_size: 20$
@c error ("Example expression is", U);
@c errexp1;
@c error_size: 30$
@c error ("Example expression is", U);

The size of @code{U}, as determined by @code{ERROR-SIZE}, is 24.

@example
(%i1) U: (C^D^E + B + A)/(cos(X-1) + 1)$

(%i2) error_size: 20$

(%i3) error ("Example expression is", U);

Example expression is errexp1
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i4) errexp1;
                            E
                           D
                          C   + B + A
(%o4)                    --------------
                         cos(X - 1) + 1
(%i5) error_size: 30$

(%i6) error ("Example expression is", U);

                         E
                        D
                       C   + B + A
Example expression is --------------
                      cos(X - 1) + 1
 -- an error.  Quitting.  To debug this try debugmode(true);
@end example

@opencatbox{Categories:}
@category{Debugging}
@category{Display flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{error_syms}
@defvr {Option variable} error_syms
Default value: @code{[errexp1, errexp2, errexp3]}

In error messages, expressions larger than @mref{error_size} are replaced by
symbols, and the symbols are set to the expressions.  The symbols are taken from
the list @code{error_syms}.  The first too-large expression is replaced by
@code{error_syms[1]}, the second by @code{error_syms[2]}, and so on.

If there are more too-large expressions than there are elements of
@code{error_syms}, symbols are constructed automatically, with the @var{n}-th
symbol equivalent to @code{concat ('errexp, @var{n})}.

See also @mref{error} and @mrefdot{error_size}

@opencatbox{Categories:}
@category{Debugging}
@category{Display flags and variables}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{errormsg_fn}
@deffn {Function} errormsg ()

Reprints the most recent error message.
The variable @code{error} holds the message,
and @mref{errormsg} formats and prints it.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{errormsg}
@defvr {Option variable} errormsg
Default value: @code{true}

When @code{false} the output of error messages is suppressed.

The option variable @code{errormsg} can not be set in a block to a local 
value.  The global value of @code{errormsg} is always present.

@c ===beg===
@c errormsg;
@c sin(a,b);
@c errormsg: false;
@c sin(a,b);
@c ===end===
@example
@group
(%i1) errormsg;
(%o1)                         true
@end group
@group
(%i2) sin(a,b);
sin: wrong number of arguments.
 -- an error. To debug this try: debugmode(true);
@end group
@group
(%i3) errormsg: false;
(%o3)                         false
@end group
@group
(%i4) sin(a,b);
 -- an error. To debug this try: debugmode(true);
@end group
@end example

The option variable @code{errormsg} can not be set in a block to a local value.

@c ===beg===
@c f(bool):=block([errormsg:bool],
@c                      print ("value of errormsg is",errormsg))$
@c errormsg:true;
@c f(false);
@c errormsg:false;
@c f(true);
@c ===end===
@example
(%i1) f(bool):=block([errormsg:bool],
                     print ("value of errormsg is",errormsg))$
@group
(%i2) errormsg:true;
(%o2)                         true
@end group
@group
(%i3) f(false);
value of errormsg is true 
(%o3)                         true
@end group
@group
(%i4) errormsg:false;
(%o4)                         false
@end group
@group
(%i5) f(true);
value of errormsg is false 
(%o5)                         false
@end group
@end example

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{go}
@deffn {Function} go (@var{tag})

is used within a @mref{block} to transfer control to the statement
of the block which is tagged with the argument to @code{go}.  To tag a
statement, precede it by an atomic argument as another statement in
the @code{block}.  For example:

@example
block ([x], x:1, loop, x+1, ..., go(loop), ...)
@end example

The argument to @code{go} must be the name of a tag appearing in the same
@code{block}.  One cannot use @code{go} to transfer to tag in a @code{block}
other than the one containing the @code{go}.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION, EXPANSION, EXAMPLES
@c THIS ITEM IS IMPORTANT

@c -----------------------------------------------------------------------------
@anchor{if}
@deffn {Special operator} if

Represents conditional evaluation.  Various forms of @code{if} expressions are
recognized.

@code{if @var{cond_1} then @var{expr_1} else @var{expr_0}}
eva@-lu@-ates to @var{expr_1} if @var{cond_1} evaluates to @code{true},
otherwise the expression evaluates to @var{expr_0}.

The command @code{if @var{cond_1} then @var{expr_1} elseif @var{cond_2} then
@var{expr_2} elseif ... else @var{expr_0}} evaluates to @var{expr_k} if
@var{cond_k} is @code{true} and all preceding conditions are @code{false}.  If
none of the conditions are @code{true}, the expression evaluates to
@code{expr_0}.

A trailing @code{else false} is assumed if @code{else} is missing.  That is,
the command @code{if @var{cond_1} then @var{expr_1}} is equivalent to
@code{if @var{cond_1} then @var{expr_1} else false}, and the command
@code{if @var{cond_1} then @var{expr_1} elseif ... elseif @var{cond_n} then
@var{expr_n}} is equivalent to @code{if @var{cond_1} then @var{expr_1} elseif 
... elseif @var{cond_n} then @var{expr_n} else false}.

The alternatives @var{expr_0}, @dots{}, @var{expr_n} may be any Maxima
expressions, including nested @code{if} expressions.  The alternatives are
neither simplified nor evaluated unless the corresponding condition is
@code{true}.

The conditions @var{cond_1}, @dots{}, @var{cond_n} are expressions which
potentially or actually evaluate to @code{true} or @code{false}.
When a condition does not actually evaluate to @code{true} or @code{false},
the behavior of @code{if} is governed by the global flag @code{prederror}.
When @code{prederror} is @code{true}, it is an error if any evaluated condition
does not evaluate to @code{true} or @code{false}.  Otherwise, conditions which
do not evaluate to @code{true} or @code{false} are accepted, and the result is
a conditional expression.

Among other elements, conditions may comprise relational and logical operators
as follows.

@c - SEEMS LIKE THIS TABLE WANTS TO BE IN A DISCUSSION OF PREDICATE FUNCTIONS; PRESENT LOCATION IS OK I GUESS
@c I (rtoy) would prefer to use the headitem prototype text since it's
@c easier to reason about, but currently the html output just seems to
@c ignore that and automatically makes the column width fit the widest
@c entry.  We use @columnfractions to fix that, but it's hard to know
@c a priori how wide to make each column.
@indentedblock
@c @multitable {greater than or equal to 333} {notequal 333} {relational function}
@multitable @columnfractions .3 .2 .3
@headitem Operation @tab Symbol @tab Type
@item less than                  @tab @code{<}        @tab relational infix
@item less than or equal to      @tab @code{<=}       @tab relational infix
@item equality (syntactic)       @tab @code{=}        @tab relational infix
@item equality (value)           @tab @code{equal}    @tab relational function
@item negation of equal          @tab @code{notequal} @tab relational function
@item greater than or equal to   @tab @code{>=}       @tab relational infix
@item greater than               @tab @code{>}        @tab relational infix
@item and                        @tab @code{and}      @tab logical infix
@item or                         @tab @code{or}       @tab logical infix
@item not                        @tab @code{not}      @tab logical infix
@end multitable
@end indentedblock

@opencatbox{Categories:}
@category{Programming}
@category{Predicate functions}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION
@c THIS ITEM IS IMPORTANT

@c -----------------------------------------------------------------------------
@anchor{map}
@deffn {Function} map (@var{f}, @var{expr_1}, @dots{}, @var{expr_n})

Returns an expression whose leading operator is the same as that of the
expressions @var{expr_1}, @dots{}, @var{expr_n} but whose subparts are the
results of applying @var{f} to the corresponding subparts of the expressions.
@var{f} is either the name of a function of @math{n} arguments or is a
@code{lambda} form of @math{n} arguments.

@mref{maperror} - if @code{false} will cause all of the mapping
functions to (1) stop when they finish going down the shortest
@var{expr_i} if not all of the @var{expr_i} are of the same length and
(2) apply @var{f} to [@var{expr_1}, @var{expr_2}, @dots{}]  if the
@var{expr_i} are not all the same type of object.  If @code{maperror}
is @code{true} then an error message will be given in the above two
instances.

One of the uses of this function is to @code{map} a function (e.g.
@mref{partfrac}) onto each term of a very large expression where it ordinarily
wouldn't be possible to use the function on the entire expression due to an
exhaustion of list storage space in the course of the computation.

See also @mrefcomma{scanmap} @mrefcomma{maplist} @mrefcomma{outermap} @mref{matrixmap} and @mrefdot{apply}

@c IN THESE EXAMPLES, SPELL OUT WHAT IS THE MAIN OPERATOR 
@c AND SHOW HOW THE RESULT FOLLOWS FROM THE DESCRIPTION STATED IN THE FIRST PARAGRAPH

@c ===beg===
@c map(f,x+a*y+b*z);
@c map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));
@c map(ratsimp, x/(x^2+x)+(y^2+y)/y);
@c map("=",[a,b],[-0.5,3]);
@c ===end===
@example
(%i1) map(f,x+a*y+b*z);
(%o1)                        f(b z) + f(a y) + f(x)
(%i2) map(lambda([u],partfrac(u,x)),x+1/(x^3+4*x^2+5*x+2));
                           1       1        1
(%o2)                     ----- - ----- + -------- + x
                         x + 2   x + 1          2
                                         (x + 1)
(%i3) map(ratsimp, x/(x^2+x)+(y^2+y)/y);
                                      1
(%o3)                            y + ----- + 1
                                    x + 1
(%i4) map("=",[a,b],[-0.5,3]);
(%o4)                          [a = - 0.5, b = 3]


@end example

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{mapatom}
@deffn {Function} mapatom (@var{expr})

Returns @code{true} if and only if @var{expr} is treated by the mapping
routines as an atom.  "Mapatoms" are atoms, numbers
(including rational numbers), subscripted variables and structure
references.
@c WHAT ARE "THE MAPPING ROUTINES", AND WHY DO THEY HAVE A SPECIALIZED NOTION OF ATOMS ??

@opencatbox{Categories:}
@category{Predicate functions}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION

@c -----------------------------------------------------------------------------
@anchor{maperror}
@defvr {Option variable} maperror
Default value: @code{true}

When @code{maperror} is @code{false}, causes all of the mapping functions,
for example

@example
map (@var{f}, @var{expr_1}, @var{expr_2}, ...)
@end example

to (1) stop when they finish going down the shortest @var{expr_i} if
not all of the @var{expr_i} are of the same length and (2) apply
@var{f} to [@var{expr_1}, @var{expr_2}, @dots{}] if the @var{expr_i} are
not all the same type of object.

If @code{maperror} is @code{true} then an error message
is displayed in the above two instances.

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end defvr

@c -----------------------------------------------------------------------------
@anchor{mapprint}
@defvr {Option variable} mapprint
Default value: @code{true}

When @code{mapprint} is @code{true}, various information messages from
@mref{map}, @mref{maplist}, and @mref{fullmap} are produced in certain
situations.  These include situations where @code{map} would use
@mref{apply}, or @code{map} is truncating on the shortest list.

If @mref{mapprint} is @code{false}, these messages are suppressed.

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end defvr

@c NEEDS CLARIFICATION

@c -----------------------------------------------------------------------------
@anchor{maplist}
@deffn {Function} maplist (@var{f}, @var{expr_1}, @dots{}, @var{expr_n})

Returns a list of the applications of @var{f} to the parts of the expressions
@var{expr_1}, @dots{}, @var{expr_n}.  @var{f} is the name of a function, or a
lambda expression.

@code{maplist} differs from @code{map(@var{f}, @var{expr_1}, ..., @var{expr_n})}
which returns an expression with the same main operator as @var{expr_i} has
(except for simplifications and the case where @mref{map} does an @mref{apply}).

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION

@c -----------------------------------------------------------------------------
@anchor{prederror}
@defvr {Option variable} prederror
Default value: @code{false}

When @code{prederror} is @code{true}, an error message is displayed whenever the
predicate of an @code{if} statement or an @mref{is} function fails to evaluate
to either @code{true} or @code{false}.

If @code{false}, @code{unknown} is returned
instead in this case.  The @code{prederror: false} mode is not supported in
translated code;
however, @code{maybe} is supported in translated code.

See also @mref{is} and @mrefdot{maybe}

@opencatbox{Categories:}
@category{Programming}
@category{Predicate functions}
@closecatbox

@end defvr

@anchor{return}
@deffn {Function} return (@var{value})
May be used to exit explicitly from the current @mrefcomma{block} @mrefcomma{while}
@mref{for} or @mref{do} loop bringing its argument. It therefore can be compared
with the @code{return} statement found in other programming languages but it yields
one difference: In maxima only returns from the current block, not from the entire
function it was called in. In this aspect it more closely resembles the @code{break}
statement from C.

@c ===beg===
@c for i:1 thru 10 do o:i;
@c for i:1 thru 10 do if i=3 then return(i);
@c for i:1 thru 10 do 
@c     (
@c         block([i],
@c             i:3,
@c             return(i)
@c         ), 
@c         return(8)
@c     );
@c block([i],
@c     i:4,
@c     block([o],
@c         o:5,
@c         return(o)
@c     ),
@c     return(i),
@c     return(10)
@c  );
@c ===end===
@example
@group
(%i1) for i:1 thru 10 do o:i;
(%o1)                         done
@end group
@group
(%i2) for i:1 thru 10 do if i=3 then return(i);
(%o2)                           3
@end group
@group
(%i3) for i:1 thru 10 do
    (
        block([i],
            i:3,
            return(i)
        ),
        return(8)
    );
(%o3)                           8
@end group
(%i4) block([i],
    i:4,
    block([o],
        o:5,
        return(o)
    ),
    return(i),
    return(10)
 );
(%o4)                           4
@end example


See also @mrefcomma{for} @mrefcomma{while} @mref{do} and @mref{block}.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c NEEDS CLARIFICATION
@anchor{scanmap}
@deffn {Function} scanmap @
@fname{scanmap} (@var{f}, @var{expr}) @
@fname{scanmap} (@var{f}, @var{expr}, bottomup)

Recursively applies @var{f} to @var{expr}, in a top
down manner.  This is most useful when complete factorization is
desired, for example:

@example
(%i1) exp:(a^2+2*a+1)*y + x^2$
(%i2) scanmap(factor,exp);
                                    2      2
(%o2)                         (a + 1)  y + x
@end example

Note the way in which @code{scanmap} applies the given function
@code{factor} to the constituent subexpressions of @var{expr}; if
another form of @var{expr} is presented to @code{scanmap} then the
result may be different.  Thus, @code{%o2} is not recovered when
@code{scanmap} is applied to the expanded form of @code{exp}:

@example
(%i3) scanmap(factor,expand(exp));
                           2                  2
(%o3)                      a  y + 2 a y + y + x
@end example

Here is another example of the way in which @code{scanmap} recursively
applies a given function to all subexpressions, including exponents:

@example
(%i4) expr : u*v^(a*x+b) + c$
(%i5) scanmap('f, expr);
                    f(f(f(a) f(x)) + f(b))
(%o5) f(f(f(u) f(f(v)                      )) + f(c))
@end example

@code{scanmap (@var{f}, @var{expr}, bottomup)} applies @var{f} to @var{expr} in a
bottom-up manner.  E.g., for undefined @code{f},

@example
scanmap(f,a*x+b) ->
   f(a*x+b) -> f(f(a*x)+f(b)) -> f(f(f(a)*f(x))+f(b))
scanmap(f,a*x+b,bottomup) -> f(a)*f(x)+f(b)
    -> f(f(a)*f(x))+f(b) ->
     f(f(f(a)*f(x))+f(b))
@end example

In this case, you get the same answer both
ways.

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{throw}
@deffn {Function} throw (@var{expr})

Evaluates @var{expr} and throws the value back to the most recent
@mref{catch}.  @code{throw} is used with @code{catch} as a nonlocal return
mechanism.

@opencatbox{Categories:}
@category{Programming}
@closecatbox
@end deffn

@c -----------------------------------------------------------------------------
@anchor{outermap}
@deffn {Function} outermap (@var{f}, @var{a_1}, @dots{}, @var{a_n})

Applies the function @var{f} to each one of the elements of the outer product
@var{a_1} cross @var{a_2} @dots{} cross @var{a_n}.

@var{f} is the name of a function of @math{n} arguments or a lambda expression
of @math{n} arguments.  Each argument @var{a_k} may be a list or nested list,
or a matrix, or any other kind of expression.

The @code{outermap} return value is a nested structure.  Let @var{x} be the
return value.  Then @var{x} has the same structure as the first list, nested
list, or matrix argument, @code{@var{x}[i_1]...[i_m]} has the same structure as
the second list, nested list, or matrix argument,
@code{@var{x}[i_1]...[i_m][j_1]...[j_n]} has the same structure as the third
list, nested list, or matrix argument, and so on, where @var{m}, @var{n},
@dots{} are the numbers of indices required to access the elements of each
argument (one for a list, two for a matrix, one or more for a nested list).
Arguments which are not lists or matrices have no effect on the structure of
the return value.

Note that the effect of @code{outermap} is different from that of applying
@var{f} to each one of the elements of the outer product returned by
@mref{cartesian_product}.  @code{outermap} preserves the structure of the
arguments in the return value, while @code{cartesian_product} does not.

@code{outermap} evaluates its arguments.

See also @mrefcomma{map} @mrefcomma{maplist} and @mrefdot{apply}
@c CROSS REF OTHER FUNCTIONS HERE ??

Examples:

Elementary examples of @code{outermap}.
To show the argument combinations more clearly, @code{F} is left undefined.

@c ===beg===
@c outermap (F, [a, b, c], [1, 2, 3]);
@c outermap (F, matrix ([a, b], [c, d]), matrix ([1, 2], [3, 4]));
@c outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
@c outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
@c outermap ("+", [a, b, c], [1, 2, 3]);
@c ===end===
@example
@group
(%i1) outermap (F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)], 
                                     [F(c, 1), F(c, 2), F(c, 3)]]
@end group
@group
(%i2) outermap (F, matrix ([a, b], [c, d]), matrix ([1, 2], [3, 4]));
         [ [ F(a, 1)  F(a, 2) ]  [ F(b, 1)  F(b, 2) ] ]
         [ [                  ]  [                  ] ]
         [ [ F(a, 3)  F(a, 4) ]  [ F(b, 3)  F(b, 4) ] ]
(%o2)    [                                            ]
         [ [ F(c, 1)  F(c, 2) ]  [ F(d, 1)  F(d, 2) ] ]
         [ [                  ]  [                  ] ]
         [ [ F(c, 3)  F(c, 4) ]  [ F(d, 3)  F(d, 4) ] ]
@end group
@group
(%i3) outermap (F, [a, b], x, matrix ([1, 2], [3, 4]));
       [ F(a, x, 1)  F(a, x, 2) ]  [ F(b, x, 1)  F(b, x, 2) ]
(%o3) [[                        ], [                        ]]
       [ F(a, x, 3)  F(a, x, 4) ]  [ F(b, x, 3)  F(b, x, 4) ]
@end group
@group
(%i4) outermap (F, [a, b], matrix ([1, 2]), matrix ([x], [y]));
       [ [ F(a, 1, x) ]  [ F(a, 2, x) ] ]
(%o4) [[ [            ]  [            ] ], 
       [ [ F(a, 1, y) ]  [ F(a, 2, y) ] ]
                              [ [ F(b, 1, x) ]  [ F(b, 2, x) ] ]
                              [ [            ]  [            ] ]]
                              [ [ F(b, 1, y) ]  [ F(b, 2, y) ] ]
@end group
@group
(%i5) outermap ("+", [a, b, c], [1, 2, 3]);
(%o5) [[a + 1, a + 2, a + 3], [b + 1, b + 2, b + 3], 
                                           [c + 1, c + 2, c + 3]]
@end group
@end example

A closer examination of the @code{outermap} return value.  The first, second,
and third arguments are a matrix, a list, and a matrix, respectively.
The return value is a matrix.
Each element of that matrix is a list,
and each element of each list is a matrix.

@c ===beg===
@c arg_1 :  matrix ([a, b], [c, d]);
@c arg_2 : [11, 22];
@c arg_3 : matrix ([xx, yy]);
@c xx_0 : outermap (lambda ([x, y, z], x / y + z), arg_1, 
@c                                                    arg_2, arg_3);
@c xx_1 : xx_0 [1][1];
@c xx_2 : xx_0 [1][1] [1];
@c xx_3 : xx_0 [1][1] [1] [1][1];
@c [op (arg_1), op (arg_2), op (arg_3)];
@c [op (xx_0), op (xx_1), op (xx_2)];
@c ===end===
@example
@group
(%i1) arg_1 :  matrix ([a, b], [c, d]);
                            [ a  b ]
(%o1)                       [      ]
                            [ c  d ]
@end group
@group
(%i2) arg_2 : [11, 22];
(%o2)                       [11, 22]
@end group
@group
(%i3) arg_3 : matrix ([xx, yy]);
(%o3)                      [ xx  yy ]
@end group
(%i4) xx_0 : outermap (lambda ([x, y, z], x / y + z), arg_1,
                                                   arg_2, arg_3);
               [  [      a        a  ]  [      a        a  ]  ]
               [ [[ xx + --  yy + -- ], [ xx + --  yy + -- ]] ]
               [  [      11       11 ]  [      22       22 ]  ]
(%o4)  Col 1 = [                                              ]
               [  [      c        c  ]  [      c        c  ]  ]
               [ [[ xx + --  yy + -- ], [ xx + --  yy + -- ]] ]
               [  [      11       11 ]  [      22       22 ]  ]
                 [  [      b        b  ]  [      b        b  ]  ]
                 [ [[ xx + --  yy + -- ], [ xx + --  yy + -- ]] ]
                 [  [      11       11 ]  [      22       22 ]  ]
         Col 2 = [                                              ]
                 [  [      d        d  ]  [      d        d  ]  ]
                 [ [[ xx + --  yy + -- ], [ xx + --  yy + -- ]] ]
                 [  [      11       11 ]  [      22       22 ]  ]
@group
(%i5) xx_1 : xx_0 [1][1];
           [      a        a  ]  [      a        a  ]
(%o5)     [[ xx + --  yy + -- ], [ xx + --  yy + -- ]]
           [      11       11 ]  [      22       22 ]
@end group
@group
(%i6) xx_2 : xx_0 [1][1] [1];
                      [      a        a  ]
(%o6)                 [ xx + --  yy + -- ]
                      [      11       11 ]
@end group
@group
(%i7) xx_3 : xx_0 [1][1] [1] [1][1];
                                  a
(%o7)                        xx + --
                                  11
@end group
@group
(%i8) [op (arg_1), op (arg_2), op (arg_3)];
(%o8)                  [matrix, [, matrix]
@end group
@group
(%i9) [op (xx_0), op (xx_1), op (xx_2)];
(%o9)                  [matrix, [, matrix]
@end group
@end example

@code{outermap} preserves the structure of the arguments in the return value,
while @code{cartesian_product} does not.

@c ===beg===
@c outermap (F, [a, b, c], [1, 2, 3]);
@c setify (flatten (%));
@c map (lambda ([L], apply (F, L)), 
@c                      cartesian_product ({a, b, c}, {1, 2, 3}));
@c is (equal (%, %th (2)));
@c ===end===
@example
@group
(%i1) outermap (F, [a, b, c], [1, 2, 3]);
(%o1) [[F(a, 1), F(a, 2), F(a, 3)], [F(b, 1), F(b, 2), F(b, 3)], 
                                     [F(c, 1), F(c, 2), F(c, 3)]]
@end group
@group
(%i2) setify (flatten (%));
(%o2) @{F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3), 
                                       F(c, 1), F(c, 2), F(c, 3)@}
@end group
@group
(%i3) map (lambda ([L], apply (F, L)),
                     cartesian_product (@{a, b, c@}, @{1, 2, 3@}));
(%o3) @{F(a, 1), F(a, 2), F(a, 3), F(b, 1), F(b, 2), F(b, 3), 
                                       F(c, 1), F(c, 2), F(c, 3)@}
@end group
@group
(%i4) is (equal (%, %th (2)));
(%o4)                         true
@end group
@end example

@opencatbox{Categories:}
@category{Function application}
@closecatbox
@end deffn