1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
|
@menu
* Introduction to Simplification::
* Functions and Variables for Simplification::
@end menu
@c -----------------------------------------------------------------------------
@node Introduction to Simplification, Functions and Variables for Simplification, , Simplification
@section Introduction to Simplification
@c -----------------------------------------------------------------------------
@c -----------------------------------------------------------------------------
Maxima interacts with the user through a cycle of actions called the read-eval-print loop (REPL).
This consists of three steps: reading and parsing, evaluating and simplifying,
and outputting. Parsing converts a syntactically valid sequence of typed characters into
a internal data structure. Evaluation
replaces variable and function names with their values and simplification rewrites
expressions to be easier for the user or other programs to understand. Output
displays results in a variety of different formats and notations.
Evaluation and simplification sometimes appear to have similar functionality, and
Maxima uses simplification in many cases where other systems use evaluation.
For example, arithmetic both on numbers and on symbolic expressions is simplification, not evaluation:
@code{2+2} simplifies to @code{4}, @code{2+x+x} simplifies to @code{2+2*x}, and
@code{sqrt(7)^4} simplifies to @code{49}.
Evaluation and simplification are interleaved.
For example, @code{factor(integrate(x+1,x))} first calls the built-in function @mref{integrate},
giving @code{x+x*x*2^-1};
that simplifies to @code{x+(1/2)*x^2}; this in turn is passed to the @mref{factor} function,
which returns @code{(x*(x+2))/2}.
Evaluation is what makes Maxima a programming language: it implements
functions, subroutines, variables, values, loops, assignments and so on.
Evaluation replaces built-in or user-defined function names by their definitions and
variables by their values. This is largely the same as activities of a
conventional programming language, but extended to work with symbolic mathematical data.
The system has various optional "flags" which the user can set to control the details of
evaluation. @xref{Functions and Variables for Evaluation}.
Simplification maintains the value of an expression
while re-formulating its form to be smaller, simpler to understand, or to
conform to a particular specification (like expanded). For
example, @code{sin(%pi/2)} to @code{1}, and @code{x+x} to @code{2*x}.
There are many flags which control simplification. For example,
with @code{triginverses:true}, @code{atan(tan(x))} does not simplify to @code{x},
but with @code{triginverses:all}, it does.
Simplification can be provided in three ways:
@itemize @bullet
@item The internal, built-in automated simplifier,
@item User-written pattern-matching transformations, linked to the simplifier by using
"tellsimp" or "tellsimpafter" and called automatically,
@item User-written simplification routines adding using the @code{simplifying} subsystem.
@end itemize
The internal simplifier belongs to the heart of Maxima. It is a large and
complicated collection of programs, and it has been refined over many years and by
thousands of users. Nevertheless, especially if you are trying out novel ideas or
unconventional notation, you may find it helpful to make small (or large) changes
to the program yourself. For details see for example the paper at the end of
@url{https://people.eecs.berkeley.edu/~fateman/papers/intro5.txt}.
Maxima internally represents expressions as "trees" with operators or "roots"
like @code{+}, @code{*} , @code{=} and operands ("leaves") which are variables like
@var{x}, @var{y}, @var{z}, functions
or sub-trees, like @code{x*y}. Each operator has a simplification program
associated with it. @code{+} (which also covers binary @code{-} since
@code{a-b = a+(-1)*b)} and @code{*} (which also covers @code{/}
since @code{a/b = a*b^(-1)}) have rather elaborate simplification programs. These
simplification programs (simplus, simptimes, simpexpt, etc.) are called whenever
the simplifier encounters the respective arithmetic operators in an expression
tree to be analyzed.
The structure of the simplifier dates back to 1965, and many hands have worked
on it through the years. It is data-directed, or object-oriented in the sense that
it dispatches to the appropriate routine
depending on the root of some sub-tree of the expression, recursively. This general
approach means that modifications to simplification are generally localized.
In many cases it is straightforward to add an
operator and its simplification routine without disturbing existing code.
Maxima also provides a variety of transformation routines that can change the form of an
expression, including @mref{factor} (polynomial factorization), @mref{horner}
(reorganize a polynomial using Horner's rule), @mref{partfrac}
(rewrite a rational function as partial fractions),
@mref{trigexpand} (apply the sum formulas for trigonometric functions),
and so on.
Users can also write routines that change the form of an expression.
Besides this general simplifier operating on algebraic
expression trees, there are several other representations of expressions in
Maxima which have separate methods. For example, the
@mref{rat} function converts polynomials to vectors of coefficients to
assist in rapid manipulation of such forms. Other representations include
Taylor series and the (rarely used) Poisson series.
All operators introduced by the user initially have no simplification
programs associated with them. Maxima does not know anything about
function "f" and so typing @code{f(a,b)} will result in simplifying
@var{a},@var{b}, but not @code{f}.
Even some built-in operators have no simplifications. For example,
@code{=} does not "simplify" -- it is a place-holder with no
simplification semantics other
than to simplify its two arguments, in this case referred to as the left and
right sides. Other parts of Maxima such as the solve program take special
note of equations, that is, trees with @code{=} as the root.
(Note -- in Maxima, the assignment operation is @code{:} . That is, @code{q: 4}
sets the value of the symbol @var{q} to @code{4}.
Function definition is done with @code{:=}. )
The general simplifier returns results with an internal flag indicating the
expression and each sub-expression has been simplified. This does not
guarantee that it is unique over all possible equivalent expressions. That's
too hard (theoretically, not possible given the generality of what can be
expressed in Maxima). However, some aspects of the expression, such as the
ordering of terms in a sum or product, are made uniform. This is important
for the other programs to work properly.
A number of option variables control simplification. Indeed, simplification
can be turned off entirely using @code{simp:false}. However, many
internal routines will not operate correctly with @code{simp:false}.
(About the only time it seems plausible to turn off the simplifier
is in the rare case that you want to over-ride a built-in simplification.
In that case you might temporarily disable the simplifier, put in the new
transformation via @mrefcomma{tellsimp} and then re-enable the simplifier
by @code{simp:true}.)
It is more plausible for you to associate user-defined symbolic function names
or operators with properties (@mrefcomma{additive}
@mrefcomma{lassociative} @mrefcomma{oddfun} @mrefcomma{antisymmetric}
@mrefcomma{linear} @mrefcomma{outative} @mrefcomma{commutative}
@mrefcomma{multiplicative} @mrefcomma{rassociative} @mrefcomma{evenfun}
@mref{nary} and @mref{symmetric}). These options steer
the simplifier processing in systematic directions.
For example, @code{declare(f,oddfun)} specifies that @code{f} is an odd function.
Maxima will simplify @code{f(-x)} to @code{-f(x)}. In the case of an even
function, that is @code{declare(g,evenfun)},
Maxima will simplify @code{g(-x)} to @code{g(x)}. You can also associate a
programming function with a name such as @code{h(x):=x^2+1}. In that case the
evaluator will immediately replace
@code{h(3)} by @code{10}, and @code{h(a+1)} by @code{(a+1)^2+1}, so any properties
of @code{h} will be ignored.
In addition to these directly related properties set up by the user, facts and
properties from the actual context may have an impact on the simplifier's behavior,
too. @xref{Introduction to Maxima's Database}.
Example: @code{sin(n*%pi)} is simplified to zero, if @var{n} is an integer.
@c ===beg===
@c sin(n*%pi);
@c declare(n, integer);
@c sin(n*%pi);
@c ===end===
@example
@group
(%i1) sin(n*%pi);
(%o1) sin(%pi n)
@end group
@group
(%i2) declare(n, integer);
(%o2) done
@end group
@group
(%i3) sin(n*%pi);
(%o3) 0
@end group
@end example
If automated simplification is not sufficient, you can consider a variety of
built-in, but explicitly called simplfication functions (@mrefcomma{ratsimp}
@mrefcomma{expand} @mrefcomma{factor} @mref{radcan} and others). There are
also flags that will push simplification into one or another direction.
Given @code{demoivre:true} the simplifier rewrites
complex exponentials as trigonometric forms. Given @code{exponentialize:true}
the simplifier tries to do the reverse: rewrite trigonometric forms as complex
exponentials.
As everywhere in Maxima, by writing your own functions (be it in the Maxima
user language or in the implementation language Lisp) and explicitly calling them
at selected places in the program, you can respond to your individual
simplification needs. Lisp gives you a handle on all the internal mechanisms, but
you rarely need this full generality. "Tellsimp" is designed to generate much
of the Lisp internal interface into the simplifier automatically.
See @xref{Rules and Patterns}.
Over the years (Maxima/Macsyma's origins date back to about 1966!) users have
contributed numerous application packages and tools to extend or alter its
functional behavior. Various non-standard and "share" packages exist to modify
or extend simplification as well. You are invited to look into this more
experimental material where work is still in progress @xref{simplification-pkg}.
The following appended material is optional on a first reading, and reading it
is not necessary for productive use of Maxima. It is for the curious user who
wants to understand what is going on, or the ambitious programmer who might
wish to change the (open-source) code. Experimentation with redefining Maxima
Lisp code is easily possible: to change the definition of a Lisp program (say
the one that simplifies @code{cos()}, named @code{simp%cos}), you simply
load into Maxima a text file that will overwrite the @code{simp%cos} function
from the maxima package.
@c -----------------------------------------------------------------------------
@node Functions and Variables for Simplification, , Introduction to Simplification, Simplification
@section Functions and Variables for Simplification
@c -----------------------------------------------------------------------------
@c -----------------------------------------------------------------------------
@anchor{additive}
@defvr {Property} additive
If @code{declare(f,additive)} has been executed, then:
(1) If @code{f} is univariate, whenever the simplifier encounters @code{f}
applied to a sum, @code{f} will be distributed over that sum. I.e.
@code{f(y+x)} will simplify to @code{f(y)+f(x)}.
(2) If @code{f} is a function of 2 or more arguments, additivity is defined as
additivity in the first argument to @code{f}, as in the case of @code{sum} or
@code{integrate}, i.e. @code{f(h(x)+g(x),x)} will simplify to
@code{f(h(x),x)+f(g(x),x)}. This simplification does not occur when @code{f} is
applied to expressions of the form @code{sum(x[i],i,lower-limit,upper-limit)}.
Example:
@c ===beg===
@c F3 (a + b + c);
@c declare (F3, additive);
@c F3 (a + b + c);
@c ===end===
@example
@group
(%i1) F3 (a + b + c);
(%o1) F3(c + b + a)
@end group
@group
(%i2) declare (F3, additive);
(%o2) done
@end group
@group
(%i3) F3 (a + b + c);
(%o3) F3(c) + F3(b) + F3(a)
@end group
@end example
@opencatbox{Categories:}
@category{Operators}
@category{Declarations and inferences}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{antisymmetric}
@defvr {Property} antisymmetric
If @code{declare(h,antisymmetric)} is done, this tells the simplifier that
@code{h} is antisymmetric. E.g. @code{h(x,z,y)} will simplify to
@code{- h(x, y, z)}. That is, it will give (-1)^n times the result given by
@mref{symmetric} or @mrefcomma{commutative} where n is the number of interchanges
of two arguments necessary to convert it to that form.
Examples:
@c ===beg===
@c S (b, a);
@c declare (S, symmetric);
@c S (b, a);
@c S (a, c, e, d, b);
@c T (b, a);
@c declare (T, antisymmetric);
@c T (b, a);
@c T (a, c, e, d, b);
@c ===end===
@example
@group
(%i1) S (b, a);
(%o1) S(b, a)
@end group
@group
(%i2) declare (S, symmetric);
(%o2) done
@end group
@group
(%i3) S (b, a);
(%o3) S(a, b)
@end group
@group
(%i4) S (a, c, e, d, b);
(%o4) S(a, b, c, d, e)
@end group
@group
(%i5) T (b, a);
(%o5) T(b, a)
@end group
@group
(%i6) declare (T, antisymmetric);
(%o6) done
@end group
@group
(%i7) T (b, a);
(%o7) - T(a, b)
@end group
@group
(%i8) T (a, c, e, d, b);
(%o8) T(a, b, c, d, e)
@end group
@end example
@opencatbox{Categories:}
@category{Operators}
@category{Declarations and inferences}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{combine}
@deffn {Function} combine (@var{expr})
Simplifies the sum @var{expr} by combining terms with the same
denominator into a single term.
See also: @mrefdot{rncombine}
Example:
@c ===beg===
@c 1*f/2*b + 2*c/3*a + 3*f/4*b +c/5*b*a;
@c combine (%);
@c ===end===
@example
@group
(%i1) 1*f/2*b + 2*c/3*a + 3*f/4*b +c/5*b*a;
5 b f a b c 2 a c
(%o1) ----- + ----- + -----
4 5 3
@end group
@group
(%i2) combine (%);
75 b f + 4 (3 a b c + 10 a c)
(%o2) -----------------------------
60
@end group
@end example
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{commutative}
@defvr {Property} commutative
If @code{declare(h, commutative)} is done, this tells the simplifier that
@code{h} is a commutative function. E.g. @code{h(x, z, y)} will simplify to
@code{h(x, y, z)}. This is the same as @mrefdot{symmetric}
Example:
@c ===beg===
@c S (b, a);
@c S (a, b) + S (b, a);
@c declare (S, commutative);
@c S (b, a);
@c S (a, b) + S (b, a);
@c S (a, c, e, d, b);
@c ===end===
@example
@group
(%i1) S (b, a);
(%o1) S(b, a)
@end group
@group
(%i2) S (a, b) + S (b, a);
(%o2) S(b, a) + S(a, b)
@end group
@group
(%i3) declare (S, commutative);
(%o3) done
@end group
@group
(%i4) S (b, a);
(%o4) S(a, b)
@end group
@group
(%i5) S (a, b) + S (b, a);
(%o5) 2 S(a, b)
@end group
@group
(%i6) S (a, c, e, d, b);
(%o6) S(a, b, c, d, e)
@end group
@end example
@opencatbox{Categories:}
@category{Operators}
@category{Declarations and inferences}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{demoivre}
@deffn {Function} demoivre (@var{expr})
@deffnx {Option variable} demoivre
The function @code{demoivre (expr)} converts one expression
without setting the global variable @code{demoivre}.
When the variable @code{demoivre} is @code{true}, complex exponentials are
converted into equivalent expressions in terms of circular functions:
@code{exp (a + b*%i)} simplifies to @code{%e^a * (cos(b) + %i*sin(b))}
if @code{b} is free of @code{%i}. @code{a} and @code{b} are not expanded.
The default value of @code{demoivre} is @code{false}.
@code{exponentialize} converts circular and hyperbolic functions to exponential
form. @code{demoivre} and @code{exponentialize} cannot both be true at the same
time.
@opencatbox{Categories:}
@category{Complex variables}
@category{Trigonometric functions}
@category{Hyperbolic functions}
@closecatbox
@end deffn
@c NEEDS WORK
@c -----------------------------------------------------------------------------
@anchor{function_distrib}
@deffn {Function} distrib (@var{expr})
Distributes sums over products. It differs from @code{expand} in that it works
at only the top level of an expression, i.e., it doesn't recurse and it is
faster than @code{expand}. It differs from @code{multthru} in that it expands
all sums at that level.
Examples:
@c ===beg===
@c distrib ((a+b) * (c+d));
@c multthru ((a+b) * (c+d));
@c distrib (1/((a+b) * (c+d)));
@c expand (1/((a+b) * (c+d)), 1, 0);
@c ===end===
@example
(%i1) distrib ((a+b) * (c+d));
(%o1) b d + a d + b c + a c
(%i2) multthru ((a+b) * (c+d));
(%o2) (b + a) d + (b + a) c
(%i3) distrib (1/((a+b) * (c+d)));
1
(%o3) ---------------
(b + a) (d + c)
(%i4) expand (1/((a+b) * (c+d)), 1, 0);
1
(%o4) ---------------------
b d + a d + b c + a c
@end example
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{distribute_over}
@defvr {Option variable} distribute_over
Default value: @code{true}
@code{distribute_over} controls the mapping of functions over bags like lists,
matrices, and equations. At this time not all Maxima functions have this
property. It is possible to look up this property with the command
@mrefdot{properties}.
The mapping of functions is switched off, when setting @code{distribute_over}
to the value @code{false}.
Examples:
The @code{sin} function maps over a list:
@c ===beg===
@c sin([x,1,1.0]);
@c ===end===
@example
@group
(%i1) sin([x,1,1.0]);
(%o1) [sin(x), sin(1), 0.8414709848078965]
@end group
@end example
@code{mod} is a function with two arguments which maps over lists. Mapping over
nested lists is possible too:
@c ===beg===
@c mod([x,11,2*a],10);
@c mod([[x,y,z],11,2*a],10);
@c ===end===
@example
@group
(%i1) mod([x,11,2*a],10);
(%o1) [mod(x, 10), 1, 2 mod(a, 5)]
@end group
@group
(%i2) mod([[x,y,z],11,2*a],10);
(%o2) [[mod(x, 10), mod(y, 10), mod(z, 10)], 1, 2 mod(a, 5)]
@end group
@end example
Mapping of the @code{floor} function over a matrix and an equation:
@c ===beg===
@c floor(matrix([a,b],[c,d]));
@c floor(a=b);
@c ===end===
@example
@group
(%i1) floor(matrix([a,b],[c,d]));
[ floor(a) floor(b) ]
(%o1) [ ]
[ floor(c) floor(d) ]
@end group
@group
(%i2) floor(a=b);
(%o2) floor(a) = floor(b)
@end group
@end example
Functions with more than one argument map over any of the arguments or all
arguments:
@c ===beg===
@c expintegral_e([1,2],[x,y]);
@c ===end===
@example
@group
(%i1) expintegral_e([1,2],[x,y]);
(%o1) [[expintegral_e(1, x), expintegral_e(1, y)],
[expintegral_e(2, x), expintegral_e(2, y)]]
@end group
@end example
Check if a function has the property distribute_over:
@c ===beg===
@c properties(abs);
@c ===end===
@example
@group
(%i1) properties(abs);
(%o1) [integral, rule, distributes over bags, noun, gradef,
system function]
@end group
@end example
The mapping of functions is switched off, when setting @code{distribute_over}
to the value @code{false}.
@c ===beg===
@c distribute_over;
@c sin([x,1,1.0]);
@c distribute_over : not distribute_over;
@c sin([x,1,1.0]);
@c ===end===
@example
@group
(%i1) distribute_over;
(%o1) true
@end group
@group
(%i2) sin([x,1,1.0]);
(%o2) [sin(x), sin(1), 0.8414709848078965]
@end group
@group
(%i3) distribute_over : not distribute_over;
(%o3) false
@end group
@group
(%i4) sin([x,1,1.0]);
(%o4) sin([x, 1, 1.0])
@end group
@end example
@opencatbox{Categories:}
@category{Simplification flags and variables}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{domain}
@defvr {Option variable} domain
Default value: @code{real}
When @code{domain} is set to @code{complex}, @code{sqrt (x^2)} will remain
@code{sqrt (x^2)} instead of returning @code{abs(x)}.
@c PRESERVE EDITORIAL COMMENT -- MAY HAVE SOME SIGNIFICANCE NOT YET UNDERSTOOD !!!
@c The notion of a "domain" of simplification is still in its infancy,
@c and controls little more than this at the moment.
@opencatbox{Categories:}
@category{Simplification flags and variables}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{evenfun}
@anchor{oddfun}
@defvr {Property} evenfun
@defvrx {Property} oddfun
@code{declare(f, evenfun)} or @code{declare(f, oddfun)} tells Maxima to recognize
the function @code{f} as an even or odd function.
Examples:
@c ===beg===
@c o (- x) + o (x);
@c declare (o, oddfun);
@c o (- x) + o (x);
@c e (- x) - e (x);
@c declare (e, evenfun);
@c e (- x) - e (x);
@c ===end===
@example
(%i1) o (- x) + o (x);
(%o1) o(x) + o(- x)
(%i2) declare (o, oddfun);
(%o2) done
(%i3) o (- x) + o (x);
(%o3) 0
(%i4) e (- x) - e (x);
(%o4) e(- x) - e(x)
(%i5) declare (e, evenfun);
(%o5) done
(%i6) e (- x) - e (x);
(%o6) 0
@end example
@end defvr
@c -----------------------------------------------------------------------------
@anchor{expand}
@deffn {Function} expand @
@fname{expand} (@var{expr}) @
@fname{expand} (@var{expr}, @var{p}, @var{n})
Expand expression @var{expr}.
Products of sums and exponentiated sums are
multiplied out, numerators of rational expressions which are sums are
split into their respective terms, and multiplication (commutative
and non-commutative) are distributed over addition at all levels of
@var{expr}.
For polynomials one should usually use @code{ratexpand} which uses a
more efficient algorithm.
@code{maxnegex} and @code{maxposex} control the maximum negative and
positive exponents, respectively, which will expand.
@code{expand (@var{expr}, @var{p}, @var{n})} expands @var{expr},
using @var{p} for @code{maxposex} and @var{n} for @code{maxnegex}.
This is useful in order to expand part but not all of an expression.
@code{expon} - the exponent of the largest negative power which is
automatically expanded (independent of calls to @code{expand}). For example
if @code{expon} is 4 then @code{(x+1)^(-5)} will not be automatically expanded.
@code{expop} - the highest positive exponent which is automatically expanded.
Thus @code{(x+1)^3}, when typed, will be automatically expanded only if
@code{expop} is greater than or equal to 3. If it is desired to have
@code{(x+1)^n} expanded where @code{n} is greater than @code{expop} then
executing @code{expand ((x+1)^n)} will work only if @code{maxposex} is not
less than @code{n}.
@code{expand(expr, 0, 0)} causes a resimplification of @code{expr}. @code{expr}
is not reevaluated. In distinction from @code{ev(expr, noeval)} a special
representation (e. g. a CRE form) is removed. See also @mrefdot{ev}
The @code{expand} flag used with @code{ev} causes expansion.
The file @file{share/simplification/facexp.mac}
@c I should really use a macro which expands to something like
@c @uref{file://...,,simplification/facexp.mac}. But texi2html
@c currently supports @uref only with one argument.
@c Worse, the `file:' scheme is OS and browser dependent.
contains several related functions (in particular @code{facsum},
@code{factorfacsum} and @code{collectterms}, which are autoloaded) and variables
(@code{nextlayerfactor} and @code{facsum_combine}) that provide the user with
the ability to structure expressions by controlled expansion.
@c MERGE share/simplification/facexp.usg INTO THIS FILE OR CREATE NEW FILE facexp.texi
Brief function descriptions are available in @file{simplification/facexp.usg}.
A demo is available by doing @code{demo("facexp")}.
Examples:
@c ===beg===
@c expr:(x+1)^2*(y+1)^3;
@c expand(expr);
@c expand(expr,2);
@c expr:(x+1)^-2*(y+1)^3;
@c expand(expr);
@c expand(expr,2,2);
@c ===end===
@example
@group
(%i1) expr:(x+1)^2*(y+1)^3;
2 3
(%o1) (x + 1) (y + 1)
@end group
@group
(%i2) expand(expr);
2 3 3 3 2 2 2 2 2
(%o2) x y + 2 x y + y + 3 x y + 6 x y + 3 y + 3 x y
2
+ 6 x y + 3 y + x + 2 x + 1
@end group
@group
(%i3) expand(expr,2);
2 3 3 3
(%o3) x (y + 1) + 2 x (y + 1) + (y + 1)
@end group
@group
(%i4) expr:(x+1)^-2*(y+1)^3;
3
(y + 1)
(%o4) --------
2
(x + 1)
@end group
@group
(%i5) expand(expr);
3 2
y 3 y 3 y 1
(%o5) ------------ + ------------ + ------------ + ------------
2 2 2 2
x + 2 x + 1 x + 2 x + 1 x + 2 x + 1 x + 2 x + 1
@end group
@group
(%i6) expand(expr,2,2);
3
(y + 1)
(%o6) ------------
2
x + 2 x + 1
@end group
@end example
Resimplify an expression without expansion:
@c ===beg===
@c expr:(1+x)^2*sin(x);
@c exponentialize:true;
@c expand(expr,0,0);
@c ===end===
@example
@group
(%i1) expr:(1+x)^2*sin(x);
2
(%o1) (x + 1) sin(x)
@end group
@group
(%i2) exponentialize:true;
(%o2) true
@end group
@group
(%i3) expand(expr,0,0);
2 %i x - %i x
%i (x + 1) (%e - %e )
(%o3) - -------------------------------
2
@end group
@end example
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{expandwrt}
@deffn {Function} expandwrt (@var{expr}, @var{x_1}, @dots{}, @var{x_n})
Expands expression @code{expr} with respect to the
variables @var{x_1}, @dots{}, @var{x_n}.
All products involving the variables appear explicitly. The form returned
will be free of products of sums of expressions that are not free of
the variables. @var{x_1}, @dots{}, @var{x_n}
may be variables, operators, or expressions.
By default, denominators are not expanded, but this can be controlled by
means of the switch @code{expandwrt_denom}.
This function is autoloaded from
@file{simplification/stopex.mac}.
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{expandwert_denom}
@defvr {Option variable} expandwrt_denom
Default value: @code{false}
@code{expandwrt_denom} controls the treatment of rational
expressions by @code{expandwrt}. If @code{true}, then both the numerator and
denominator of the expression will be expanded according to the
arguments of @code{expandwrt}, but if @code{expandwrt_denom} is @code{false},
then only the numerator will be expanded in that way.
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end defvr
@c NEEDS A STAND-ALONE DESCRIPTION (NOT "IS SIMILAR TO")
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{expandwrt_factored}
@deffn {Function} expandwrt_factored (@var{expr}, @var{x_1}, @dots{}, @var{x_n})
is similar to @code{expandwrt}, but treats expressions that are products
somewhat differently. @code{expandwrt_factored} expands only on those factors
of @code{expr} that contain the variables @var{x_1}, @dots{}, @var{x_n}.
@c NOT SURE WHY WE SHOULD MENTION THIS HERE
This function is autoloaded from @file{simplification/stopex.mac}.
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{expon}
@defvr {Option variable} expon
Default value: 0
@code{expon} is the exponent of the largest negative power which
is automatically expanded (independent of calls to @code{expand}). For
example, if @code{expon} is 4 then @code{(x+1)^(-5)} will not be automatically
expanded.
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{exponentialize}
@deffn {Function} exponentialize (@var{expr})
@deffnx {Option variable} exponentialize
The function @code{exponentialize (expr)} converts
circular and hyperbolic functions in @var{expr} to exponentials,
without setting the global variable @code{exponentialize}.
When the variable @code{exponentialize} is @code{true},
all circular and hyperbolic functions are converted to exponential form.
The default value is @code{false}.
@code{demoivre} converts complex exponentials into circular functions.
@code{exponentialize} and @code{demoivre} cannot
both be true at the same time.
@opencatbox{Categories:}
@category{Complex variables}
@category{Trigonometric functions}
@category{Hyperbolic functions}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{expop}
@defvr {Option variable} expop
Default value: 0
@code{expop} is the highest positive exponent which is automatically expanded.
Thus @code{(x + 1)^3}, when typed, will be automatically expanded only if
@code{expop} is greater than or equal to 3. If it is desired to have
@code{(x + 1)^n} expanded where @code{n} is greater than @code{expop} then
executing @code{expand ((x + 1)^n)} will work only if @code{maxposex} is not
less than n.
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{lassociative}
@defvr {Property} lassociative
@code{declare (g, lassociative)} tells the Maxima simplifier that @code{g} is
left-associative. E.g., @code{g (g (a, b), g (c, d))} will simplify to
@code{g (g (g (a, b), c), d)}.
See also @mrefdot{rassociative}
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Operators}
@category{Simplification}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c WHAT'S UP WITH THE QUOTE MARKS ??
@c -----------------------------------------------------------------------------
@anchor{linear}
@defvr {Property} linear
One of Maxima's operator properties. For univariate @code{f} so
declared, "expansion" @code{f(x + y)} yields @code{f(x) + f(y)},
@code{f(a*x)} yields @code{a*f(x)} takes
place where @code{a} is a "constant". For functions of two or more arguments,
"linearity" is defined to be as in the case of @mref{sum} or @mrefcomma{integrate}
i.e., @code{f (a*x + b, x)} yields @code{a*f(x,x) + b*f(1,x)}
for @code{a} and @code{b} free of @code{x}.
Example:
@c ===beg===
@c declare (f, linear);
@c f(x+y);
@c declare (a, constant);
@c f(a*x);
@c ===end===
@example
@group
(%i1) declare (f, linear);
(%o1) done
@end group
@group
(%i2) f(x+y);
(%o2) f(y) + f(x)
@end group
@group
(%i3) declare (a, constant);
(%o3) done
@end group
@group
(%i4) f(a*x);
(%o4) a f(x)
@end group
@end example
@code{linear} is equivalent to @mref{additive} and @mrefdot{outative}
See also @mrefdot{opproperties}
Example:
@c ===beg===
@c 'sum (F(k) + G(k), k, 1, inf);
@c declare (nounify (sum), linear);
@c 'sum (F(k) + G(k), k, 1, inf);
@c ===end===
@example
@group
(%i1) 'sum (F(k) + G(k), k, 1, inf);
inf
====
\
(%o1) > (G(k) + F(k))
/
====
k = 1
@end group
@group
(%i2) declare (nounify (sum), linear);
(%o2) done
@end group
@group
(%i3) 'sum (F(k) + G(k), k, 1, inf);
inf inf
==== ====
\ \
(%o3) > G(k) + > F(k)
/ /
==== ====
k = 1 k = 1
@end group
@end example
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Operators}
@category{Simplification}
@closecatbox
@end defvr
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{maxnegex}
@defvr {Option variable} maxnegex
Default value: 1000
@code{maxnegex} is the largest negative exponent which will
be expanded by the @code{expand} command, see also @mrefdot{maxposex}
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end defvr
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{maxposex}
@defvr {Option variable} maxposex
Default value: 1000
@code{maxposex} is the largest exponent which will be
expanded with the @code{expand} command, see also @mrefdot{maxnegex}
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end defvr
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{multiplicative}
@defvr {Property} multiplicative
@code{declare(f, multiplicative)} tells the Maxima simplifier that @code{f}
is multiplicative.
@enumerate
@item
If @code{f} is univariate, whenever the simplifier encounters @code{f} applied
to a product, @code{f} distributes over that product. E.g., @code{f(x*y)}
simplifies to @code{f(x)*f(y)}.
This simplification is not applied to expressions of the form @code{f('product(...))}.
@item
If @code{f} is a function of 2 or more arguments, multiplicativity is
defined as multiplicativity in the first argument to @code{f}, e.g.,
@code{f (g(x) * h(x), x)} simplifies to @code{f (g(x) ,x) * f (h(x), x)}.
@end enumerate
@code{declare(nounify(product), multiplicative)} tells Maxima to simplify symbolic products.
Example:
@c ===beg===
@c F2 (a * b * c);
@c declare (F2, multiplicative);
@c F2 (a * b * c);
@c ===end===
@example
@group
(%i1) F2 (a * b * c);
(%o1) F2(a b c)
@end group
@group
(%i2) declare (F2, multiplicative);
(%o2) done
@end group
@group
(%i3) F2 (a * b * c);
(%o3) F2(a) F2(b) F2(c)
@end group
@end example
@code{declare(nounify(product), multiplicative)} tells Maxima to simplify symbolic products.
@c ===beg===
@c product (a[i] * b[i], i, 1, n);
@c declare (nounify (product), multiplicative);
@c product (a[i] * b[i], i, 1, n);
@c ===end===
@example
@group
(%i1) product (a[i] * b[i], i, 1, n);
n
/===\
! !
(%o1) ! ! a b
! ! i i
i = 1
@end group
@group
(%i2) declare (nounify (product), multiplicative);
(%o2) done
@end group
@group
(%i3) product (a[i] * b[i], i, 1, n);
n n
/===\ /===\
! ! ! !
(%o3) ( ! ! a ) ! ! b
! ! i ! ! i
i = 1 i = 1
@end group
@end example
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Expressions}
@category{Simplification}
@closecatbox
@end defvr
@c NEEDS WORK
@c -----------------------------------------------------------------------------
@anchor{multthru}
@deffn {Function} multthru @
@fname{multthru} (@var{expr}) @
@fname{multthru} (@var{expr_1}, @var{expr_2})
Multiplies a factor (which should be a sum) of @var{expr} by the other factors
of @var{expr}. That is, @var{expr} is @code{@var{f_1} @var{f_2} ... @var{f_n}}
where at least one factor, say @var{f_i}, is a sum of terms. Each term in that
sum is multiplied by the other factors in the product. (Namely all the factors
except @var{f_i}). @code{multthru} does not expand exponentiated sums.
This function is the fastest way to distribute products (commutative or
noncommutative) over sums. Since quotients are represented as products
@code{multthru} can be used to divide sums by products as well.
@code{multthru (@var{expr_1}, @var{expr_2})} multiplies each term in
@var{expr_2} (which should be a sum or an equation) by @var{expr_1}. If
@var{expr_1} is not itself a sum then this form is equivalent to
@code{multthru (@var{expr_1}*@var{expr_2})}.
@c ===beg===
@c x/(x-y)^2 - 1/(x-y) - f(x)/(x-y)^3;
@c multthru ((x-y)^3, %);
@c ratexpand (%);
@c ((a+b)^10*s^2 + 2*a*b*s + (a*b)^2)/(a*b*s^2);
@c multthru (%); /* note that this does not expand (b+a)^10 */
@c multthru (a.(b+c.(d+e)+f));
@c expand (a.(b+c.(d+e)+f));
@c ===end===
@example
(%i1) x/(x-y)^2 - 1/(x-y) - f(x)/(x-y)^3;
1 x f(x)
(%o1) - ----- + -------- - --------
x - y 2 3
(x - y) (x - y)
(%i2) multthru ((x-y)^3, %);
2
(%o2) - (x - y) + x (x - y) - f(x)
(%i3) ratexpand (%);
2
(%o3) - y + x y - f(x)
(%i4) ((a+b)^10*s^2 + 2*a*b*s + (a*b)^2)/(a*b*s^2);
10 2 2 2
(b + a) s + 2 a b s + a b
(%o4) ------------------------------
2
a b s
(%i5) multthru (%); /* note that this does not expand (b+a)^10 */
10
2 a b (b + a)
(%o5) - + --- + ---------
s 2 a b
s
(%i6) multthru (a.(b+c.(d+e)+f));
(%o6) a . f + a . c . (e + d) + a . b
(%i7) expand (a.(b+c.(d+e)+f));
(%o7) a . f + a . c . e + a . c . d + a . b
@end example
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{property_nary}
@defvr {Property} nary
@code{declare(f, nary)} tells Maxima to recognize the function @code{f} as an
n-ary function.
The @code{nary} declaration is not the same as calling the
@mxref{function_nary, nary} function. The sole effect of
@code{declare(f, nary)} is to instruct the Maxima simplifier to flatten nested
expressions, for example, to simplify @code{foo(x, foo(y, z))} to
@code{foo(x, y, z)}. See also @mrefdot{declare}
Example:
@c ===beg===
@c H (H (a, b), H (c, H (d, e)));
@c declare (H, nary);
@c H (H (a, b), H (c, H (d, e)));
@c ===end===
@example
(%i1) H (H (a, b), H (c, H (d, e)));
(%o1) H(H(a, b), H(c, H(d, e)))
(%i2) declare (H, nary);
(%o2) done
(%i3) H (H (a, b), H (c, H (d, e)));
(%o3) H(a, b, c, d, e)
@end example
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{negdistrib}
@defvr {Option variable} negdistrib
Default value: @code{true}
When @code{negdistrib} is @code{true}, -1 distributes over an expression.
E.g., @code{-(x + y)} becomes @code{- y - x}. Setting it to @code{false}
will allow @code{- (x + y)} to be displayed like that. This is sometimes useful
but be very careful: like the @code{simp} flag, this is one flag you do not
want to set to @code{false} as a matter of course or necessarily for other
than local use in your Maxima.
Example:
@c ===beg===
@c negdistrib;
@c -(x+y);
@c negdistrib : not negdistrib ;
@c -(x+y);
@c ===end===
@example
@group
(%i1) negdistrib;
(%o1) true
@end group
@group
(%i2) -(x+y);
(%o2) (- y) - x
@end group
@group
(%i3) negdistrib : not negdistrib ;
(%o3) false
@end group
@group
(%i4) -(x+y);
(%o4) - (y + x)
@end group
@end example
@opencatbox{Categories:}
@category{Simplification flags and variables}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{opproperties}
@defvr {System variable} opproperties
@code{opproperties} is the list of the special operator properties recognized
by the Maxima simplifier.
Items are added to the @code{opproperties} list by the function @mrefdot{define_opproperty}
Example:
@c ===beg===
@c opproperties;
@c ===end===
@example
@group
(%i1) opproperties;
(%o1) [linear, additive, multiplicative, outative, evenfun,
oddfun, commutative, symmetric, antisymmetric, nary,
lassociative, rassociative]
@end group
@end example
@opencatbox{Categories:}
@category{Global variables}
@category{Operators}
@category{Simplification}
@closecatbox
@end defvr
@c NEEDS EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{define_opproperty}
@deffn {Function} define_opproperty (@var{property_name}, @var{simplifier_fn})
Declares the symbol @var{property_name} to be an operator property,
which is simplified by @var{simplifier_fn},
which may be the name of a Maxima or Lisp function or a lambda expression.
After @code{define_opproperty} is called,
functions and operators may be declared to have the @var{property_name} property,
and @var{simplifier_fn} is called to simplify them.
@var{simplifier_fn} must be a function of one argument,
which is an expression in which the main operator is declared to have the @var{property_name} property.
@var{simplifier_fn} is called with the global flag @code{simp} disabled.
Therefore @var{simplifier_fn} must be able to carry out its simplification
without making use of the general simplifier.
@code{define_opproperty} appends @var{property_name} to the
global list @mrefdot{opproperties}
@code{define_opproperty} returns @code{done}.
Example:
Declare a new property, @code{identity}, which is simplified by @code{simplify_identity}.
Declare that @code{f} and @code{g} have the new property.
@c ===beg===
@c define_opproperty (identity, simplify_identity);
@c simplify_identity(e) := first(e);
@c declare ([f, g], identity);
@c f(10 + t);
@c g(3*u) - f(2*u);
@c ===end===
@example
@group
(%i1) define_opproperty (identity, simplify_identity);
(%o1) done
@end group
@group
(%i2) simplify_identity(e) := first(e);
(%o2) simplify_identity(e) := first(e)
@end group
@group
(%i3) declare ([f, g], identity);
(%o3) done
@end group
@group
(%i4) f(10 + t);
(%o4) t + 10
@end group
@group
(%i5) g(3*u) - f(2*u);
(%o5) u
@end group
@end example
@opencatbox{Categories:}
@category{Operators}
@category{Simplification}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{outative}
@defvr {Property} outative
@code{declare(f, outative)} tells the Maxima simplifier that constant factors
in the argument of @code{f} can be pulled out.
@enumerate
@item
If @code{f} is univariate, whenever the simplifier encounters @code{f} applied
to a product, that product will be partitioned into factors that are constant
and factors that are not and the constant factors will be pulled out. E.g.,
@code{f(a*x)} will simplify to @code{a*f(x)} where @code{a} is a constant.
Non-atomic constant factors will not be pulled out.
@item
If @code{f} is a function of 2 or more arguments, outativity is defined as in
the case of @mref{sum} or @mrefcomma{integrate} i.e., @code{f (a*g(x), x)} will
simplify to @code{a * f(g(x), x)} for @code{a} free of @code{x}.
@end enumerate
@mrefcomma{sum} @mrefcomma{integrate} and @mref{limit} are all @code{outative}.
Example:
@c ===beg===
@c F1 (100 * x);
@c declare (F1, outative);
@c F1 (100 * x);
@c declare (zz, constant);
@c F1 (zz * y);
@c ===end===
@example
@group
(%i1) F1 (100 * x);
(%o1) F1(100 x)
@end group
@group
(%i2) declare (F1, outative);
(%o2) done
@end group
@group
(%i3) F1 (100 * x);
(%o3) 100 F1(x)
@end group
@group
(%i4) declare (zz, constant);
(%o4) done
@end group
@group
(%i5) F1 (zz * y);
(%o5) zz F1(y)
@end group
@end example
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Operators}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{radcan}
@deffn {Function} radcan (@var{expr})
Simplifies @var{expr}, which can contain logs, exponentials, and radicals, by
converting it into a form which is canonical over a large class of expressions
and a given ordering of variables; that is, all functionally equivalent forms
are mapped into a unique form. For a somewhat larger class of expressions,
@code{radcan} produces a regular form. Two equivalent expressions in this class
do not necessarily have the same appearance, but their difference can be
simplified by @code{radcan} to zero.
For some expressions @code{radcan} is quite time consuming. This is the cost
of exploring certain relationships among the components of the expression for
simplifications based on factoring and partial-fraction expansions of exponents.
@c %e_to_numlog NEEDS ITS OWN @defvar !!!
@c %e_to_numlog HAS NO EFFECT ON RADCAN. RADCAN ALWAYS SIMPLIFIES
@c exp(a*log(x)) --> x^a. Commenting the following out. 11/2009
@c When @code{%e_to_numlog} is @code{true}, @code{%e^(r*log(expr))} simplifies
@c to @code{expr^r} if @code{r} is a rational number.
@c RADEXPAND CONTROLS THE SIMPLIFICATION OF THE POWER FUNCTION, E.G.
@c (x*y)^a --> x^a*y^a AND (x^a)^b --> x^(a*b), IF RADEXPAND HAS THE VALUE 'ALL.
@c THE VALUE OF RADEXPAND HAS NO EFFECT ON RADCAN. RADCAN ALWAYS SIMPLIFIES
@c THE ABOVE EXPRESSIONS. COMMENTING THE FOLLOWING OUT. 11/2009
@c When @code{radexpand} is @code{false}, certain transformations are inhibited.
@c @code{radcan (sqrt (1-x))} remains @code{sqrt (1-x)} and is not simplified
@c to @code{%i sqrt (x-1)}. @code{radcan (sqrt (x^2 - 2*x + 1))} remains
@c @code{sqrt (x^2 - 2*x + 1)} and is not simplified to @code{x - 1}.
Examples:
@c ===beg===
@c radcan((log(x+x^2)-log(x))^a/log(1+x)^(a/2));
@c radcan((log(1+2*a^x+a^(2*x))/log(1+a^x)));
@c radcan((%e^x-1)/(1+%e^(x/2)));
@c ===end===
@example
@group
(%i1) radcan((log(x+x^2)-log(x))^a/log(1+x)^(a/2));
a/2
(%o1) log(x + 1)
@end group
@group
(%i2) radcan((log(1+2*a^x+a^(2*x))/log(1+a^x)));
(%o2) 2
@end group
@group
(%i3) radcan((%e^x-1)/(1+%e^(x/2)));
x/2
(%o3) %e - 1
@end group
@end example
@opencatbox{Categories:}
@category{Simplification functions}
@closecatbox
@end deffn
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{radexpand}
@defvr {Option variable} radexpand
Default value: @code{true}
@code{radexpand} controls some simplifications of radicals.
When @code{radexpand} is @code{all}, causes nth roots of factors of a product
which are powers of n to be pulled outside of the radical. E.g. if
@code{radexpand} is @code{all}, @code{sqrt (16*x^2)} simplifies to @code{4*x}.
@c EXPRESS SIMPLIFICATON RULES IN GENERAL CASE, NOT SPECIAL CASE
More particularly, consider @code{sqrt (x^2)}.
@itemize @bullet
@item
If @code{radexpand} is @code{all} or @code{assume (x > 0)} has been executed,
@code{sqrt(x^2)} simplifies to @code{x}.
@item
If @code{radexpand} is @code{true} and @code{domain} is @code{real}
(its default), @code{sqrt(x^2)} simplifies to @code{abs(x)}.
@item
If @code{radexpand} is @code{false}, or @code{radexpand} is @code{true} and
@code{domain} is @code{complex}, @code{sqrt(x^2)} is not simplified.
@end itemize
@c CORRECT STATEMENT HERE ???
Note that @code{domain} only matters when @code{radexpand} is @code{true}.
@opencatbox{Categories:}
@category{Simplification flags and variables}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{rassociative}
@defvr {Property} rassociative
@code{declare (g, rassociative)} tells the Maxima
simplifier that @code{g} is right-associative. E.g.,
@code{g(g(a, b), g(c, d))} simplifies to @code{g(a, g(b, g(c, d)))}.
See also @mrefdot{lassociative}
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Operators}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{scsimp}
@deffn {Function} scsimp (@var{expr}, @var{rule_1}, @dots{}, @var{rule_n})
Sequential Comparative Simplification (method due to Stoute).
@code{scsimp} attempts to simplify @var{expr}
according to the rules @var{rule_1}, @dots{}, @var{rule_n}.
If a smaller expression is obtained, the process repeats. Otherwise after all
simplifications are tried, it returns the original answer.
@c MERGE EXAMPLES INTO THIS FILE
@code{example (scsimp)} displays some examples.
@opencatbox{Categories:}
@category{Simplification functions}
@closecatbox
@end deffn
@c -----------------------------------------------------------------------------
@anchor{simp}
@defvr {Option variable} simp
Default value: @code{true}
@code{simp} enables simplification. This is the default. @code{simp} is also
an @code{evflag}, which is recognized by the function @code{ev}. See @mrefdot{ev}
When @code{simp} is used as an @code{evflag} with a value @code{false}, the
simplification is suppressed only during the evaluation phase of an expression.
The flag does not suppress the simplification which follows the evaluation
phase.
Many Maxima functions and operations require simplification to be enabled to work normally.
When simplification is disabled, many results will be incomplete,
and in addition there may be incorrect results or program errors.
Examples:
The simplification is switched off globally. The expression @code{sin(1.0)} is
not simplified to its numerical value. The @code{simp}-flag switches the
simplification on.
@c ===beg===
@c simp:false;
@c sin(1.0);
@c sin(1.0),simp;
@c ===end===
@example
@group
(%i1) simp:false;
(%o1) false
@end group
@group
(%i2) sin(1.0);
(%o2) sin(1.0)
@end group
@group
(%i3) sin(1.0),simp;
(%o3) 0.8414709848078965
@end group
@end example
The simplification is switched on again. The @code{simp}-flag cannot suppress
the simplification completely. The output shows a simplified expression, but
the variable @code{x} has an unsimplified expression as a value, because the
assignment has occurred during the evaluation phase of the expression.
@c ===beg===
@c simp:true;
@c x:sin(1.0),simp:false;
@c :lisp $x
@c ===end===
@example
@group
(%i1) simp:true;
(%o1) true
@end group
@group
(%i2) x:sin(1.0),simp:false;
(%o2) 0.8414709848078965
@end group
@group
(%i3) :lisp $x
((%SIN) 1.0)
@end group
@end example
@opencatbox{Categories:}
@category{Evaluation flags}
@closecatbox
@end defvr
@c NEEDS CLARIFICATION, EXAMPLES
@c -----------------------------------------------------------------------------
@anchor{symmetric}
@defvr {Property} symmetric
@code{declare (h, symmetric)} tells the Maxima
simplifier that @code{h} is a symmetric function. E.g., @code{h (x, z, y)}
simplifies to @code{h (x, y, z)}.
@mref{commutative} is synonymous with @code{symmetric}.
@opencatbox{Categories:}
@category{Declarations and inferences}
@category{Operators}
@closecatbox
@end defvr
@c -----------------------------------------------------------------------------
@anchor{xthru}
@deffn {Function} xthru (@var{expr})
Combines all terms of @var{expr} (which should be a sum) over a common
denominator without expanding products and exponentiated sums as @code{ratsimp}
does. @code{xthru} cancels common factors in the numerator and denominator of
rational expressions but only if the factors are explicit.
@c REPHRASE IN NEUTRAL TONE (GET RID OF "IT IS BETTER")
Sometimes it is better to use @code{xthru} before @code{ratsimp}ing an
expression in order to cause explicit factors of the gcd of the numerator and
denominator to be canceled thus simplifying the expression to be
@code{ratsimp}ed.
Examples:
@c ===beg===
@c ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
@c xthru (%);
@c ===end===
@example
@group
(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
20
1 (x + 2) - 2 y x
(%o1) --------- + --------------- - ---------
19 20 20
(y + x) (y + x) (y + x)
@end group
@group
(%i2) xthru (%);
20
(x + 2) - y
(%o2) -------------
20
(y + x)
@end group
@end example
@opencatbox{Categories:}
@category{Expressions}
@closecatbox
@end deffn
|