1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Introduction to zeilberger</title>
<meta name="description" content="Maxima Manual: Introduction to zeilberger">
<meta name="keywords" content="Maxima Manual: Introduction to zeilberger">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_334.html#Index-der-Variablen-und-Funktionen" rel="index" title="Index der Variablen und Funktionen">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Inhaltsverzeichnis">
<link href="maxima_330.html#zeilberger" rel="up" title="zeilberger">
<link href="maxima_332.html#Functions-and-Variables-for-zeilberger" rel="next" title="Functions and Variables for zeilberger">
<link href="maxima_330.html#zeilberger" rel="previous" title="zeilberger">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="de" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Introduction-to-zeilberger"></a>
<div class="header">
<p>
Next: <a href="maxima_332.html#Functions-and-Variables-for-zeilberger" accesskey="n" rel="next">Functions and Variables for zeilberger</a>, Previous: <a href="maxima_330.html#zeilberger" accesskey="p" rel="previous">zeilberger</a>, Nach oben: <a href="maxima_330.html#zeilberger" accesskey="u" rel="up">zeilberger</a> [<a href="maxima_toc.html#SEC_Contents" title="Inhaltsverzeichnis" rel="contents">Inhalt</a>][<a href="maxima_334.html#Index-der-Variablen-und-Funktionen" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-to-zeilberger-1"></a>
<h3 class="section">77.1 Introduction to zeilberger</h3>
<p><code>zeilberger</code> is an implementation of Zeilberger’s algorithm for definite
hypergeometric summation, and also Gosper’s algorithm for indefinite
hypergeometric summation. <code>zeilberger</code> makes use of the "filtering"
optimization method developed by Axel Riese. <code>zeilberger</code> was developed
by Fabrizio Caruso. <code>load("zeilberger")</code> loads this package.
</p>
<a name="The-indefinite-summation-problem"></a>
<h4 class="subsection">77.1.1 The indefinite summation problem</h4>
<p><code>zeilberger</code> implements Gosper’s algorithm for indefinite hypergeometric
summation. Given a hypergeometric term <em>F_k</em> in <em>k</em> we want to find
its hypergeometric anti-difference, that is, a hypergeometric term <em>f_k</em>
such that
<em>F_k = f_(k+1) - f_k</em>.
</p>
<a name="The-definite-summation-problem"></a>
<h4 class="subsection">77.1.2 The definite summation problem</h4>
<p><code>zeilberger</code> implements Zeilberger’s algorithm for definite hypergeometric
summation. Given a proper hypergeometric term (in <em>n</em> and <em>k</em>)
</p>
<p><em>F_(n,k)</em>
and a positive integer <em>d</em> we want to find a <em>d</em>-th order linear
recurrence with polynomial coefficients (in <em>n</em>) for
<em>F_(n,k)</em>
and a rational function <em>R</em> in <em>n</em> and <em>k</em> such that
</p>
<p><em>a_0 F_(n,k) + ... + a_d F_(n+d),k = Delta_k(R(n,k) F_(n,k))</em>,
</p>
<p>where
<em>Delta_k</em>
is the <em>k</em>-forward difference operator, i.e.,
<em>Delta_k(t_k) := t_(k+1) - t_k</em>.
</p>
<a name="Verbosity-levels"></a>
<h4 class="subsection">77.1.3 Verbosity levels</h4>
<p>There are also verbose versions of the commands which are called by adding one
of the following prefixes:
</p>
<dl compact="compact">
<dt><code>Summary</code></dt>
<dd><p>Just a summary at the end is shown
</p></dd>
<dt><code>Verbose</code></dt>
<dd><p>Some information in the intermidiate steps
</p></dd>
<dt><code>VeryVerbose</code></dt>
<dd><p>More information
</p></dd>
<dt><code>Extra</code></dt>
<dd><p>Even more information including information on the linear system in
Zeilberger’s algorithm
</p></dd>
</dl>
<p>For example:
</p><p align="left"><code>GosperVerbose</code>, <code>parGosperVeryVerbose</code>, <code>ZeilbergerExtra</code>,
<code>AntiDifferenceSummary</code>.
</p>
<a name="Item_003a-zeilberger_002ede_002fnode_002fFunctions-and-Variables-for-zeilberger"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_332.html#Functions-and-Variables-for-zeilberger" accesskey="n" rel="next">Functions and Variables for zeilberger</a>, Previous: <a href="maxima_330.html#zeilberger" accesskey="p" rel="previous">zeilberger</a>, Nach oben: <a href="maxima_330.html#zeilberger" accesskey="u" rel="up">zeilberger</a> [<a href="maxima_toc.html#SEC_Contents" title="Inhaltsverzeichnis" rel="contents">Inhalt</a>][<a href="maxima_334.html#Index-der-Variablen-und-Funktionen" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|