1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for Numbers</title>
<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for Numbers">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for Numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_11.html#Numbers" rel="up" title="Numbers">
<link href="maxima_14.html#Strings" rel="next" title="Strings">
<link href="maxima_12.html#Introduction-to-Numbers" rel="previous" title="Introduction to Numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Numbers"></a>
<div class="header">
<p>
Previous: <a href="maxima_12.html#Introduction-to-Numbers" accesskey="p" rel="previous">Introduction to Numbers</a>, Up: <a href="maxima_11.html#Numbers" accesskey="u" rel="up">Numbers</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Numbers-1"></a>
<h4 class="subsection">5.1.2 Functions and Variables for Numbers</h4>
<a name="bfloat"></a><a name="Item_003a-DataTypes_002fdeffn_002fbfloat"></a><dl>
<dt><a name="index-bfloat"></a>Function: <strong>bfloat</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p><code>bfloat</code> replaces integers, rationals, floating point numbers, and some symbolic constants
in <var>expr</var> with bigfloat (variable-precision floating point) numbers.
</p>
<p>The constants <code>%e</code>, <code>%gamma</code>, <code>%phi</code>, and <code>%pi</code>
are replaced by a numerical approximation.
However, <code>%e</code> in <code>%e^x</code> is not replaced by a numeric value
unless <code>bfloat(x)</code> is a number.
</p>
<p><code>bfloat</code> also causes numerical evaluation of some built-in functions,
namely trigonometric functions, exponential functions, <code>abs</code>, and <code>log</code>.
</p>
<p>The number of significant digits in the resulting bigfloats is specified by the
global variable <code><a href="#fpprec">fpprec</a></code>.
Bigfloats already present in <var>expr</var> are replaced with values which have
precision specified by the current value of <code><a href="#fpprec">fpprec</a></code>.
</p>
<p>When <code><a href="#float2bf">float2bf</a></code> is <code>false</code>, a warning message is printed when
a floating point number is replaced by a bigfloat number with less precision.
</p>
<p>Examples:
</p>
<p><code>bfloat</code> replaces integers, rationals, floating point numbers, and some symbolic constants
in <var>expr</var> with bigfloat numbers.
</p>
<div class="example">
<pre class="example">(%i1) bfloat([123, 17/29, 1.75]);
(%o1) [1.23b2, 5.862068965517241b-1, 1.75b0]
(%i2) bfloat([%e, %gamma, %phi, %pi]);
(%o2) [2.718281828459045b0, 5.772156649015329b-1,
1.618033988749895b0, 3.141592653589793b0]
(%i3) bfloat((f(123) + g(h(17/29)))/(x + %gamma));
1.0b0 (g(h(5.862068965517241b-1)) + f(1.23b2))
(%o3) ----------------------------------------------
x + 5.772156649015329b-1
</pre></div>
<p><code>bfloat</code> also causes numerical evaluation of some built-in functions.
</p>
<div class="example">
<pre class="example">(%i1) bfloat(sin(17/29));
(%o1) 5.532051841609784b-1
(%i2) bfloat(exp(%pi));
(%o2) 2.314069263277927b1
(%i3) bfloat(abs(-%gamma));
(%o3) 5.772156649015329b-1
(%i4) bfloat(log(%phi));
(%o4) 4.812118250596035b-1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="bfloatp"></a><a name="Item_003a-DataTypes_002fdeffn_002fbfloatp"></a><dl>
<dt><a name="index-bfloatp"></a>Function: <strong>bfloatp</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a bigfloat number, otherwise <code>false</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="bftorat"></a><a name="Item_003a-DataTypes_002fdefvr_002fbftorat"></a><dl>
<dt><a name="index-bftorat"></a>Option variable: <strong>bftorat</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>bftorat</code> controls the conversion of bfloats to rational numbers. When
<code>bftorat</code> is <code>false</code>, <code><a href="#ratepsilon">ratepsilon</a></code> will be used to control the
conversion (this results in relatively small rational numbers). When
<code>bftorat</code> is <code>true</code>, the rational number generated will accurately
represent the bfloat.
</p>
<p>Note: <code>bftorat</code> has no effect on the transformation to rational numbers
with the function <code><a href="#rationalize">rationalize</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) ratepsilon:1e-4;
(%o1) 1.0e-4
(%i2) rat(bfloat(11111/111111)), bftorat:false;
`rat' replaced 9.99990999991B-2 by 1/10 = 1.0B-1
1
(%o2)/R/ --
10
(%i3) rat(bfloat(11111/111111)), bftorat:true;
`rat' replaced 9.99990999991B-2 by 11111/111111 = 9.99990999991B-2
11111
(%o3)/R/ ------
111111
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="bftrunc"></a><a name="Item_003a-DataTypes_002fdefvr_002fbftrunc"></a><dl>
<dt><a name="index-bftrunc"></a>Option variable: <strong>bftrunc</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>bftrunc</code> causes trailing zeroes in non-zero bigfloat numbers not to be
displayed. Thus, if <code>bftrunc</code> is <code>false</code>, <code>bfloat (1)</code>
displays as <code>1.000000000000000B0</code>. Otherwise, this is displayed as
<code>1.0B0</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="bigfloat_005fbits"></a><a name="Item_003a-DataTypes_002fdeffn_002fbigfloat_005fbits"></a><dl>
<dt><a name="index-bigfloat_005fbits"></a>Function: <strong>bigfloat_bits</strong> <em>()</em></dt>
<dd><p>Returns the number of bits of precision in a bigfloat number. This
value depends, of course, on the value of <code><a href="#fpprec">fpprec</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) fpprec:16;
(%o1) 16
(%i2) bigfloat_bits();
(%o2) 56
(%i3) fpprec:32;
(%o3) 32
(%i4) bigfloat_bits();
(%o4) 109
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="bigfloat_005feps"></a><a name="Item_003a-DataTypes_002fdeffn_002fbigfloat_005feps"></a><dl>
<dt><a name="index-bigfloat_005feps"></a>Function: <strong>bigfloat_eps</strong> <em>()</em></dt>
<dd><p>Returns the smallest bigfloat value, <code>eps</code>, such that
<code>1+eps</code> is not equal to 1. The value depends on <code><a href="#fpprec">fpprec</a></code>,
of course.
</p>
<div class="example">
<pre class="example">(%i1) fpprec:16;
(%o1) 16
(%i2) bigfloat_eps();
(%o2) 1.387778780781446b-17
(%i3) fpprec:32;
(%o3) 32
(%i4) bigfloat_eps();
(%o4) 1.5407439555097886824447823540679b-33
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="decode_005ffloat"></a><a name="Item_003a-DataTypes_002fdeffn_002fdecode_005ffloat"></a><dl>
<dt><a name="index-decode_005ffloat"></a>Function: <strong>decode_float</strong> <em>(<var>f</var>)</em></dt>
<dd><p><code>decode_float</code> takes a float <var>f</var> and returns a list of three
values that characterizes <var>f</var>, which must be either a <code>float</code>
or <code>bfloat</code>. The first value has the same type as <var>f</var>, but
is a number in the range <code>[1, 2)</code>. The second value is an
exponent. The third value is a float of the same type as <var>f</var> and
has the value of 1 if <var>f</var> is greater than or equal to 0;
otherwise, -1.
</p>
<p>If the returned list is <code>[mantissa, expo, sign]</code>, then
<code>scale_float(mantissa, exp)*sign</code> is identical to <var>f</var>.
</p>
<div class="example">
<pre class="example">(%i1) decode_float(4e0);
(%o1) [1.0, 2, 1.0]
(%i2) decode_float(4b0);
(%o2) [1.0b0, 2, 1.0b0]
(%i3) decode_float(%pi);
decode_float is only defined for floats and bfloats: %pi
-- an error. To debug this try: debugmode(true);
(%i4) decode_float(float(%pi));
(%o4) [1.570796326794897, 1, 1.0]
(%i5) decode_float(1.1e-5);
(%o5) [1.441792, - 17, 1.0]
(%i6) %[1]*2^%[2];
(%o6) 1.1e-5
</pre></div>
<p>This is a relatively simple interface to Common Lisp
<a href="http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm">decode_float</a>. However we return a signficand in the range
<code>[1,2)</code> instead of <code>[0.5, 1)</code>. The former matches
IEEE-754. Of course, this is extended to support bfloats.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="evenp"></a><a name="Item_003a-DataTypes_002fdeffn_002fevenp"></a><dl>
<dt><a name="index-evenp"></a>Function: <strong>evenp</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a literal even integer, otherwise
<code>false</code>.
</p>
<p><code>evenp</code> returns <code>false</code> if <var>expr</var> is a symbol, even if <var>expr</var>
is declared <code>even</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="float"></a><a name="Item_003a-DataTypes_002fdeffn_002ffloat"></a><dl>
<dt><a name="index-float"></a>Function: <strong>float</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Converts integers, rational numbers and bigfloats in <var>expr</var> to floating
point numbers. It is also an <code><a href="maxima_43.html#evflag">evflag</a></code>, <code>float</code> causes
non-integral rational numbers and bigfloat numbers to be converted to floating
point.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Evaluation-flags">Evaluation flags</a>
·</div></dd></dl>
<a name="float2bf"></a><a name="Item_003a-DataTypes_002fdefvr_002ffloat2bf"></a><dl>
<dt><a name="index-float2bf"></a>Option variable: <strong>float2bf</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code><a href="#float2bf">float2bf</a></code> is <code>false</code>, a warning message is printed when
a floating point number is replaced by a bigfloat number with less precision.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="float_005fbits"></a><a name="Item_003a-DataTypes_002fdeffn_002ffloat_005fbits"></a><dl>
<dt><a name="index-float_005fbits"></a>Function: <strong>float_bits</strong> <em>()</em></dt>
<dd><p>Returns the number of bits of precision of a floating-point number.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="float_005feps"></a><a name="Item_003a-DataTypes_002fdeffn_002ffloat_005feps"></a><dl>
<dt><a name="index-float_005feps"></a>Function: <strong>float_eps</strong> <em>()</em></dt>
<dd><p>Returns the smallest floating-point value, <code>eps</code>, such that
<code>1+eps</code> is not equal to 1.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="float_005fprecision"></a><a name="Item_003a-DataTypes_002fdeffn_002ffloat_005fprecision"></a><dl>
<dt><a name="index-float_005fprecision"></a>Function: <strong>float_precision</strong> <em>(<var>f</var>)</em></dt>
<dd><p>Returns the number of bits of precision of a floating-point number,
which can be either a float or bigfloat. This is basically the number
of bits used to represent the mantissa of a floating-point number.
For floats, this is 53 (for IEEE double-floats), but can be less when
denormal numbers occur. For bigfloats, this is equal to
<code><a href="#fpprec">fpprec</a></code>, when converted from digits to bits.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="floatnump"></a><a name="Item_003a-DataTypes_002fdeffn_002ffloatnump"></a><dl>
<dt><a name="index-floatnump"></a>Function: <strong>floatnump</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a floating point number, otherwise
<code>false</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="fpprec"></a><a name="Item_003a-DataTypes_002fdefvr_002ffpprec"></a><dl>
<dt><a name="index-fpprec"></a>Option variable: <strong>fpprec</strong></dt>
<dd><p>Default value: 16
</p>
<p><code>fpprec</code> is the number of significant digits for arithmetic on bigfloat
numbers. <code>fpprec</code> does not affect computations on ordinary floating point
numbers.
</p>
<p>See also <code><a href="#bfloat">bfloat</a></code> and <code><a href="#fpprintprec">fpprintprec</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="fpprintprec"></a><a name="Item_003a-DataTypes_002fdefvr_002ffpprintprec"></a><dl>
<dt><a name="index-fpprintprec"></a>Option variable: <strong>fpprintprec</strong></dt>
<dd><p>Default value: 0
</p>
<p><code>fpprintprec</code> is the number of digits to print when printing an ordinary
float or bigfloat number.
</p>
<p>For ordinary floating point numbers,
when <code>fpprintprec</code> has a value between 2 and 16 (inclusive),
the number of digits printed is equal to <code>fpprintprec</code>.
Otherwise, <code>fpprintprec</code> is 0, or greater than 16,
and the number is printed "readably":
that is, it is printed with sufficient digits to exactly reconstruct the number on input.
</p>
<p>For bigfloat numbers,
when <code>fpprintprec</code> has a value between 2 and <code>fpprec</code> (inclusive),
the number of digits printed is equal to <code>fpprintprec</code>.
Otherwise, <code>fpprintprec</code> is 0, or greater than <code>fpprec</code>,
and the number of digits printed is equal to <code>fpprec</code>.
</p>
<p>For both ordinary floats and bigfloats,
trailing zero digits are suppressed.
The actual number of digits printed is less than <code>fpprintprec</code>
if there are trailing zero digits.
</p>
<p><code>fpprintprec</code> cannot be 1.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Display-flags-and-variables">Display flags and variables</a>
·</div></dd></dl>
<a name="integerp"></a><a name="Item_003a-DataTypes_002fdeffn_002fintegerp"></a><dl>
<dt><a name="index-integerp"></a>Function: <strong>integerp</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a literal numeric integer, otherwise
<code>false</code>.
</p>
<p><code>integerp</code> returns <code>false</code> if <var>expr</var> is a symbol, even if <var>expr</var>
is declared <code>integer</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) integerp (0);
(%o1) true
(%i2) integerp (1);
(%o2) true
(%i3) integerp (-17);
(%o3) true
(%i4) integerp (0.0);
(%o4) false
(%i5) integerp (1.0);
(%o5) false
(%i6) integerp (%pi);
(%o6) false
(%i7) integerp (n);
(%o7) false
(%i8) declare (n, integer);
(%o8) done
(%i9) integerp (n);
(%o9) false
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="integer_005fdecode_005ffloat"></a><a name="Item_003a-DataTypes_002fdeffn_002finteger_005fdecode_005ffloat"></a><dl>
<dt><a name="index-integer_005fdecode_005ffloat"></a>Function: <strong>integer_decode_float</strong> <em>(<var>f</var>)</em></dt>
<dd><p><code>integer_decode_float</code> takes a float <var>f</var> and returns a list of three
values that characterizes <var>f</var>, which must be either a <code>float</code>
or <code>bfloat</code>. The first value is an integer. The second value is an
exponent. The third value is 1 if <var>f</var> is positive or zero;
otherwise, -1.
</p>
<p>If the returned list is <code>[mantissa, expo, sign]</code>, then
<code>scale_float(fl(mantissa), expo)*sign</code> is identical to <var>f</var>.
Here, <code>fl</code> is either <code>float</code> or <code>bfloat</code> depending on
whether <var>f</var> is a <code>float</code> or a <code>bfloat</code>.
</p>
<div class="example">
<pre class="example">(%i1) integer_decode_float(4.0);
(%o1) [4503599627370496, - 50, 1]
(%i2) integer_decode_float(4b0);
(%o2) [36028797018963968, - 53, 1]
(%i3) scale_float(float(%o1[1]), %o1[2]);
(%o3) 4.0
(%i4) scale_float(bfloat(%o2[1]), %o2[2]);
(%o4) 4.0b0
(%i5) integer_decode_float(4);
decode_float is only defined for floats and bfloats: 4
-- an error. To debug this try: debugmode(true);
(%i6) integer_decode_float(1e-7);
(%o6) [7555786372591432, - 76, 1]
(%i7) integer_decode_float(1b-7);
(%o7) [60446290980731459, - 79, 1]
(%i8) scale_float(float(%o6[1]), %o6[2]);
(%o8) 1.0e-7
</pre></div>
<p>For lisps that support denormal numbers, we have the following results.
</p><div class="example">
<pre class="example">(%i1) integer_decode_float(least_positive_float);
(%o1) [1, - 1074, 1]
(%i2) integer_decode_float(100*least_positive_float);
(%o2) [100, - 1074, 1]
(%i3) integer_decode_float(least_positive_normalized_float);
(%o3) [4503599627370496, - 1074, 1]
</pre></div>
<p>The number of bits in the integer part decreases as the denormal
number decreases. Bfloat numbers do not have denormals because the
exponent is not bounded.
</p>
<p>This is a relatively simple interface to Common Lisp
<a href="http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm">integer_decode_float</a>. However, the integer part can vary depending
on the Lisp implementation; we return the same value, independent of
the Lisp implementation. Of course, this is extended to support bfloats.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="is_005fpower_005fof_005ftwo"></a><a name="Item_003a-DataTypes_002fdeffn_002fis_005fpower_005fof_005ftwo"></a><dl>
<dt><a name="index-is_005fpower_005fof_005ftwo"></a>Function: <strong>is_power_of_two</strong> <em>(<var>n</var>)</em></dt>
<dd><p><code>is_power_to_two</code> returns <code>true</code> if <var>n</var> is a power of
two and <code>false</code> otherwise. <var>n</var> may be an integer, a
rational, a float, or a big float.
</p>
<p>Some examples:
</p><div class="example">
<pre class="example">(%i1) is_power_of_two(0);
(%o1) false
(%i2) is_power_of_two(4);
(%o2) true
(%i3) is_power_of_two(355/113);
(%o3) false
(%i4) is_power_of_two(1/32);
(%o4) true
(%i5) is_power_of_two(1048576);
(%o5) true
(%i6) is_power_of_two(1048575);
(%o6) false
(%i7) is_power_of_two(0.0);
(%o7) false
(%i8) is_power_of_two(1048576.0);
(%o8) true
(%i9) is_power_of_two(1048575.0);
(%o9) false
(%i10) is_power_of_two(1/256.0);
(%o10) true
(%i11) is_power_of_two(0b0);
(%o11) false
(%i12) is_power_of_two(1048576b0);
(%o12) true
(%i13) is_power_of_two(1048575b0);
(%o13) false
(%i14) is_power_of_two(1/256b0);
(%o14) true
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="m1pbranch"></a><a name="Item_003a-DataTypes_002fdefvr_002fm1pbranch"></a><dl>
<dt><a name="index-m1pbranch"></a>Option variable: <strong>m1pbranch</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>m1pbranch</code> is the principal branch for <code>-1</code> to a power.
Quantities such as <code>(-1)^(1/3)</code> (that is, an "odd" rational exponent) and
<code>(-1)^(1/4)</code> (that is, an "even" rational exponent) are handled as follows:
</p>
<div class="example">
<pre class="example"> domain:real
(-1)^(1/3): -1
(-1)^(1/4): (-1)^(1/4)
domain:complex
m1pbranch:false m1pbranch:true
(-1)^(1/3) 1/2+%i*sqrt(3)/2
(-1)^(1/4) sqrt(2)/2+%i*sqrt(2)/2
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·<a href="maxima_424.html#Category_003a-Global-flags">Global flags</a>
·</div></dd></dl>
<a name="nonnegintegerp"></a><a name="Item_003a-DataTypes_002fdeffn_002fnonnegintegerp"></a><dl>
<dt><a name="index-nonnegintegerp"></a>Function: <strong>nonnegintegerp</strong> <em>(<var>n</var>)</em></dt>
<dd>
<p>Return <code>true</code> if and only if <code><var>n</var> >= 0</code> and <var>n</var> is an integer.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="numberp"></a><a name="Item_003a-DataTypes_002fdeffn_002fnumberp"></a><dl>
<dt><a name="index-numberp"></a>Function: <strong>numberp</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a literal integer, rational number,
floating point number, or bigfloat, otherwise <code>false</code>.
</p>
<p><code>numberp</code> returns <code>false</code> if <var>expr</var> is a symbol, even if <var>expr</var>
is a symbolic number such as <code>%pi</code> or <code>%i</code>, or declared to be
<code>even</code>, <code>odd</code>, <code>integer</code>, <code>rational</code>, <code>irrational</code>,
<code>real</code>, <code>imaginary</code>, or <code>complex</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) numberp (42);
(%o1) true
(%i2) numberp (-13/19);
(%o2) true
(%i3) numberp (3.14159);
(%o3) true
(%i4) numberp (-1729b-4);
(%o4) true
(%i5) map (numberp, [%e, %pi, %i, %phi, inf, minf]);
(%o5) [false, false, false, false, false, false]
(%i6) declare (a, even, b, odd, c, integer, d, rational,
e, irrational, f, real, g, imaginary, h, complex);
(%o6) done
(%i7) map (numberp, [a, b, c, d, e, f, g, h]);
(%o7) [false, false, false, false, false, false, false, false]
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="numer"></a><a name="Item_003a-DataTypes_002fdefvr_002fnumer"></a><dl>
<dt><a name="index-numer"></a>Option variable: <strong>numer</strong></dt>
<dd>
<p><code>numer</code> causes some mathematical functions (including exponentiation)
with numerical arguments to be evaluated in floating point. It causes
variables in <code>expr</code> which have been given numerals to be replaced by
their values. It also sets the <code><a href="#float">float</a></code> switch on.
</p>
<p>See also <code><a href="maxima_51.html#g_t_0025enumer">%enumer</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) [sqrt(2), sin(1), 1/(1+sqrt(3))];
1
(%o1) [sqrt(2), sin(1), -----------]
sqrt(3) + 1
</pre><pre class="example">(%i2) [sqrt(2), sin(1), 1/(1+sqrt(3))],numer;
(%o2) [1.414213562373095, 0.8414709848078965, 0.3660254037844387]
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Evaluation-flags">Evaluation flags</a>
·</div></dd></dl>
<a name="numer_005fpbranch"></a><a name="Item_003a-DataTypes_002fdefvr_002fnumer_005fpbranch"></a><dl>
<dt><a name="index-numer_005fpbranch"></a>Option variable: <strong>numer_pbranch</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>The option variable <code>numer_pbranch</code> controls the numerical evaluation of
the power of a negative integer, rational, or floating point number. When
<code>numer_pbranch</code> is <code>true</code> and the exponent is a floating point number
or the option variable <code><a href="#numer">numer</a></code> is <code>true</code> too, Maxima evaluates
the numerical result using the principal branch. Otherwise a simplified, but
not an evaluated result is returned.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) (-2)^0.75;
0.75
(%o1) (- 2)
</pre><pre class="example">(%i2) (-2)^0.75,numer_pbranch:true;
(%o2) 1.189207115002721 %i - 1.189207115002721
</pre><pre class="example">(%i3) (-2)^(3/4);
3/4 3/4
(%o3) (- 1) 2
</pre><pre class="example">(%i4) (-2)^(3/4),numer;
0.75
(%o4) 1.681792830507429 (- 1)
</pre><pre class="example">(%i5) (-2)^(3/4),numer,numer_pbranch:true;
(%o5) 1.189207115002721 %i - 1.189207115002721
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="numerval"></a><a name="Item_003a-DataTypes_002fdeffn_002fnumerval"></a><dl>
<dt><a name="index-numerval"></a>Function: <strong>numerval</strong> <em>(<var>x_1</var>, <var>expr_1</var>, …, <var>var_n</var>, <var>expr_n</var>)</em></dt>
<dd>
<p>Declares the variables <code>x_1</code>, …, <var>x_n</var> to have
numeric values equal to <code>expr_1</code>, …, <code>expr_n</code>.
The numeric value is evaluated and substituted for the variable
in any expressions in which the variable occurs if the <code>numer</code> flag is
<code>true</code>. See also <code><a href="maxima_43.html#ev">ev</a></code>.
</p>
<p>The expressions <code>expr_1</code>, …, <code>expr_n</code> can be any expressions,
not necessarily numeric.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="oddp"></a><a name="Item_003a-DataTypes_002fdeffn_002foddp"></a><dl>
<dt><a name="index-oddp"></a>Function: <strong>oddp</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a literal odd integer, otherwise
<code>false</code>.
</p>
<p><code>oddp</code> returns <code>false</code> if <var>expr</var> is a symbol, even if <var>expr</var>
is declared <code>odd</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·</div></dd></dl>
<a name="ratepsilon"></a><a name="Item_003a-DataTypes_002fdefvr_002fratepsilon"></a><dl>
<dt><a name="index-ratepsilon"></a>Option variable: <strong>ratepsilon</strong></dt>
<dd><p>Default value: <code>2.0e-15</code>
</p>
<p><code>ratepsilon</code> is the tolerance used in the conversion
of floating point numbers to rational numbers, when the option variable
<code><a href="#bftorat">bftorat</a></code> has the value <code>false</code>. See <code>bftorat</code> for an example.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·<a href="maxima_424.html#Category_003a-Rational-expressions">Rational expressions</a>
·</div></dd></dl>
<a name="rationalize"></a><a name="Item_003a-DataTypes_002fdeffn_002frationalize"></a><dl>
<dt><a name="index-rationalize"></a>Function: <strong>rationalize</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Convert all double floats and big floats in the Maxima expression <var>expr</var> to
their exact rational equivalents. If you are not familiar with the binary
representation of floating point numbers, you might be surprised that
<code>rationalize (0.1)</code> does not equal 1/10. This behavior isn’t special to
Maxima – the number 1/10 has a repeating, not a terminating, binary
representation.
</p>
<div class="example">
<pre class="example">(%i1) rationalize (0.5);
1
(%o1) -
2
</pre><pre class="example">(%i2) rationalize (0.1);
3602879701896397
(%o2) -----------------
36028797018963968
</pre><pre class="example">(%i3) fpprec : 5$
</pre><pre class="example">(%i4) rationalize (0.1b0);
209715
(%o4) -------
2097152
</pre><pre class="example">(%i5) fpprec : 20$
</pre><pre class="example">(%i6) rationalize (0.1b0);
236118324143482260685
(%o6) ----------------------
2361183241434822606848
</pre><pre class="example">(%i7) rationalize (sin (0.1*x + 5.6));
3602879701896397 x 3152519739159347
(%o7) sin(------------------ + ----------------)
36028797018963968 562949953421312
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div></dd></dl>
<a name="ratnump"></a><a name="Item_003a-DataTypes_002fdeffn_002fratnump"></a><dl>
<dt><a name="index-ratnump"></a>Function: <strong>ratnump</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if <var>expr</var> is a literal integer or ratio of literal
integers, otherwise <code>false</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
·<a href="maxima_424.html#Category_003a-Rational-expressions">Rational expressions</a>
·</div></dd></dl>
<a name="scale_005ffloat"></a><a name="Item_003a-DataTypes_002fdeffn_002fscale_005ffloat"></a><dl>
<dt><a name="index-scale_005ffloat"></a>Function: <strong>scale_float</strong> <em>(<var>f</var>, <var>n</var>)</em></dt>
<dd><p><code>scale_float</code> scales the float <var>f</var> by the value
<code>2^<var>n</var></code>. This is done carefully so that no round-off every
occurs. If <var>f</var> is a float, then it is possible to underflow to 0
or overflow, depending on the value of <var>f</var> and <var>n</var>. Bigfloats
cannot underflow or overflow.
</p>
<div class="example">
<pre class="example">(%i1) scale_float(2d0, 2);
(%o1) 8.0
(%i2) scale_float(2d0, -2);
(%o2) 0.5
(%i3) scale_float(-2d0, -10);
(%o3) - 0.001953125
(%i4) scale_float(1d0, -2000);
(%o4) 0.0
(%i5) scale_float(2b0, 2);
(%o5) 8.0b0
(%i6) scale_float(1b0, -2000);
(%o6) 8.709809816217217b-603
(%i7) scale_float(1, 5);
scale_float: first arg must be a float or bfloat: 1
-- an error. To debug this try: debugmode(true);
(%i8) scale_float(1.0, n);
scale_float: second arg must be an integer: n
-- an error. To debug this try: debugmode(true);
</pre></div>
<p>This is a relatively simple interface to Common Lisp
<a href="http://www.lispworks.com/documentation/HyperSpec/Body/f_dec_fl.htm">scale_float</a>. Of course, this is extended to support bfloats.
</p>
</dd></dl>
<a name="unit_005fin_005flast_005fplace"></a><a name="Item_003a-DataTypes_002fdeffn_002funit_005fin_005flast_005fplase"></a><dl>
<dt><a name="index-unit_005fin_005flast_005fplase"></a>Function: <strong>unit_in_last_plase</strong> <em>(<var>n</var>)</em></dt>
<dd>
<p><code>unit_in_last_place</code> returns a value that is the gap between
<var>n</var> and the nearest other number. See, for example,
<a href="https://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT">Kahan, FOOTNOTE 1</a>. <code>unit_in_last_place</code> supports rational numbers,
floating-point numbers and bigfloat numbers. For integer, the result
is always 1, and for rational numbers the result is always 0.
</p>
<p>The examples below assume
<a href="https://en.wikipedia.org/wiki/IEEE_754">IEEE-754</a> arithmetic that
supports
<a href="https://en.wikipedia.org/wiki/IEEE_754-1985#Denormalized_numbers">denormal</a>
numbers. Some lisps like <a href="https://clisp.sourceforge.io/">Clisp</a>
do not have denormal numbers.
</p>
<div class="example">
<pre class="example">(%i1) unit_in_last_place(0);
(%o1) 1
(%i2) unit_in_last_place(-123);
(%o2) 1
(%i3) unit_in_last_place(2/3);
(%o3) 0
(%i4) unit_in_last_place(355/113);
(%o4) 0
(%i5) unit_in_last_place(0b0);
(%o5) 0.0b0
(%i6) unit_in_last_place(0.0);
(%o6) 4.940656458412465e-324
(%i7) unit_in_last_place(1.0);
(%o7) 1.110223024625157e-16
(%i8) unit_in_last_place(1b0);
(%o8) 1.387778780781446b-17
(%i9) unit_in_last_place(100.0);
(%o9) 1.4210854715202e-14
(%i10) unit_in_last_place(100b0);
(%o10) 1.77635683940025b-15
(%i11) fpprec:32;
(%o11) 32
(%i12) unit_in_last_place(1b0);
(%o12) 1.5407439555097886824447823540679b-33
(%i13) unit_in_last_place(100b0);
(%o13) 1.972152263052529513529321413207b-31
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Numerical-evaluation">Numerical evaluation</a>
·</div>
</dd></dl>
<a name="Item_003a-DataTypes_002fnode_002fStrings"></a><hr>
<div class="header">
<p>
Previous: <a href="maxima_12.html#Introduction-to-Numbers" accesskey="p" rel="previous">Introduction to Numbers</a>, Up: <a href="maxima_11.html#Numbers" accesskey="u" rel="up">Numbers</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|