1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Logistic Random Variable</title>
<meta name="description" content="Maxima 5.47.0 Manual: Logistic Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Logistic Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" rel="up" title="Functions and Variables for continuous distributions">
<link href="maxima_233.html#Pareto-Random-Variable" rel="next" title="Pareto Random Variable">
<link href="maxima_231.html#Continuous-Uniform-Random-Variable" rel="previous" title="Continuous Uniform Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Logistic-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_233.html#Pareto-Random-Variable" accesskey="n" rel="next">Pareto Random Variable</a>, Previous: <a href="maxima_231.html#Continuous-Uniform-Random-Variable" accesskey="p" rel="previous">Continuous Uniform Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Logistic-Random-Variable-1"></a>
<h4 class="subsection">52.2.12 Logistic Random Variable</h4>
<p>The <em>logistic</em> distribution is a continuous distribution where
it’s cumulative distribution function is the logistic function.
</p>
<a name="pdf_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005flogistic"></a><dl>
<dt><a name="index-pdf_005flogistic"></a>Function: <strong>pdf_logistic</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the density function of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p><em>a</em> is the location parameter and <em>b</em> is the scale
parameter.
</p>
<p>The pdf is
$$
f(x; a, b) = {e^{-(x-a)/b} \over b\left(1 + e^{-(x-a)/b}\right)^2}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="cdf_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005flogistic"></a><dl>
<dt><a name="index-cdf_005flogistic"></a>Function: <strong>cdf_logistic</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The cdf is
$$
F(x; a, b) = {1\over 1+e^{-(x-a)/b}}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="quantile_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005flogistic"></a><dl>
<dt><a name="index-quantile_005flogistic"></a>Function: <strong>quantile_logistic</strong> <em>(<var>q</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>; in other words, this is the inverse of <code>cdf_logistic</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="mean_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fmean_005flogistic"></a><dl>
<dt><a name="index-mean_005flogistic"></a>Function: <strong>mean_logistic</strong> <em>(<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the mean of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The mean is
$$
E[X] = a
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="var_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fvar_005flogistic"></a><dl>
<dt><a name="index-var_005flogistic"></a>Function: <strong>var_logistic</strong> <em>(<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the variance of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The variance is
$$
V[X] = {\pi^2 b^2 \over 3}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="std_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fstd_005flogistic"></a><dl>
<dt><a name="index-std_005flogistic"></a>Function: <strong>std_logistic</strong> <em>(<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the standard deviation of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The standard deviation is
$$
D[X] = {\pi b\over \sqrt{3}}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="skewness_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fskewness_005flogistic"></a><dl>
<dt><a name="index-skewness_005flogistic"></a>Function: <strong>skewness_logistic</strong> <em>(<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the skewness coefficient of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The skewness coefficient is
$$
SK[X] = 0
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="kurtosis_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002fkurtosis_005flogistic"></a><dl>
<dt><a name="index-kurtosis_005flogistic"></a>Function: <strong>kurtosis_logistic</strong> <em>(<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the kurtosis coefficient of a
\({\it Logistic}(a,b)\) random variable , with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The kurtosis coefficient is
$$
KU[X] = {6\over 5}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="random_005flogistic"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005flogistic"></a><dl>
<dt><a name="index-random_005flogistic"></a>Function: <strong>random_logistic</strong> <em>(<var>a</var>,<var>b</var>) <br> <tt>random_logistic</tt> (<var>a</var>,<var>b</var>,<var>n</var>)</em></dt>
<dd>
<p>Returns a
\({\it Logistic}(a,b)\) random variate, with <em>b>0</em>. Calling <code>random_logistic</code> with a third argument <var>n</var>, a random sample of size <var>n</var> will be simulated.
</p>
<p>The implemented algorithm is based on the general inverse method.
</p>
<p>To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
·</div>
</dd></dl>
<a name="Item_003a-distrib_002fnode_002fPareto-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_233.html#Pareto-Random-Variable" accesskey="n" rel="next">Pareto Random Variable</a>, Previous: <a href="maxima_231.html#Continuous-Uniform-Random-Variable" accesskey="p" rel="previous">Continuous Uniform Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|