File: maxima_237.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (162 lines) | stat: -rw-r--r-- 8,766 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Cauchy Random Variable</title>

<meta name="description" content="Maxima 5.47.0 Manual: Cauchy Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Cauchy Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" rel="up" title="Functions and Variables for continuous distributions">
<link href="maxima_238.html#Gumbel-Random-Variable" rel="next" title="Gumbel Random Variable">
<link href="maxima_236.html#Laplace-Random-Variable" rel="previous" title="Laplace Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Cauchy-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_238.html#Gumbel-Random-Variable" accesskey="n" rel="next">Gumbel Random Variable</a>, Previous: <a href="maxima_236.html#Laplace-Random-Variable" accesskey="p" rel="previous">Laplace Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cauchy-Random-Variable-1"></a>
<h4 class="subsection">52.2.17 Cauchy Random Variable</h4>

<p>The <em>Cauchy</em> distribution (also known as the Lorentz
distribution) is the distribution of of the ratio of two independent
normally distributed random variables with mean zero.
</p>
<p>Note that the mean, variance, standard deviation, skewness
coefficient, and kurtosis coefficient are all undefined for the Cauchy
distribution.  The integrals do not converge in this case.
</p>
<a name="pdf_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fcauchy"></a><dl>
<dt><a name="index-pdf_005fcauchy"></a>Function: <strong>pdf_cauchy</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the density function of a 
\({\it Cauchy}(a,b)\) random variable, with <em>b&gt;0</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The pdf is
$$
f(x; a, b) = {b\over \pi\left((x-a)^2+b^2\right)}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="cdf_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fcauchy"></a><dl>
<dt><a name="index-cdf_005fcauchy"></a>Function: <strong>cdf_cauchy</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a 
\({\it Cauchy}(a,b)\) random variable, with <em>b&gt;0</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The cdf is
$$
F(x; a, b) = {1\over 2} + {1\over \pi} \tan^{-1} {x-a\over b}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="quantile_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fcauchy"></a><dl>
<dt><a name="index-quantile_005fcauchy"></a>Function: <strong>quantile_cauchy</strong> <em>(<var>q</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a 
\({\it Cauchy}(a,b)\) random variable, with <em>b&gt;0</em>; in other words, this is the inverse of <code>cdf_cauchy</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="random_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fcauchy"></a><dl>
<dt><a name="index-random_005fcauchy"></a>Function: <strong>random_cauchy</strong> <em>(<var>a</var>,<var>b</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>random_cauchy</tt> (<var>a</var>,<var>b</var>,<var>n</var>)</em></dt>
<dd>
<p>Returns a 
\({\it Cauchy}(a,b)\) random variate, with <em>b&gt;0</em>. Calling <code>random_cauchy</code> with a third argument <var>n</var>, a random sample of size <var>n</var> will be simulated.
</p>
<p>The implemented algorithm is based on the general inverse method.
</p>
<p>To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
&middot;</div>
</dd></dl>



<a name="Item_003a-distrib_002fnode_002fGumbel-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_238.html#Gumbel-Random-Variable" accesskey="n" rel="next">Gumbel Random Variable</a>, Previous: <a href="maxima_236.html#Laplace-Random-Variable" accesskey="p" rel="previous">Laplace Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>