1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Cauchy Random Variable</title>
<meta name="description" content="Maxima 5.47.0 Manual: Cauchy Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Cauchy Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" rel="up" title="Functions and Variables for continuous distributions">
<link href="maxima_238.html#Gumbel-Random-Variable" rel="next" title="Gumbel Random Variable">
<link href="maxima_236.html#Laplace-Random-Variable" rel="previous" title="Laplace Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Cauchy-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_238.html#Gumbel-Random-Variable" accesskey="n" rel="next">Gumbel Random Variable</a>, Previous: <a href="maxima_236.html#Laplace-Random-Variable" accesskey="p" rel="previous">Laplace Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Cauchy-Random-Variable-1"></a>
<h4 class="subsection">52.2.17 Cauchy Random Variable</h4>
<p>The <em>Cauchy</em> distribution (also known as the Lorentz
distribution) is the distribution of of the ratio of two independent
normally distributed random variables with mean zero.
</p>
<p>Note that the mean, variance, standard deviation, skewness
coefficient, and kurtosis coefficient are all undefined for the Cauchy
distribution. The integrals do not converge in this case.
</p>
<a name="pdf_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fcauchy"></a><dl>
<dt><a name="index-pdf_005fcauchy"></a>Function: <strong>pdf_cauchy</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the density function of a
\({\it Cauchy}(a,b)\) random variable, with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The pdf is
$$
f(x; a, b) = {b\over \pi\left((x-a)^2+b^2\right)}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="cdf_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fcauchy"></a><dl>
<dt><a name="index-cdf_005fcauchy"></a>Function: <strong>cdf_cauchy</strong> <em>(<var>x</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a
\({\it Cauchy}(a,b)\) random variable, with <em>b>0</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The cdf is
$$
F(x; a, b) = {1\over 2} + {1\over \pi} \tan^{-1} {x-a\over b}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="quantile_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fcauchy"></a><dl>
<dt><a name="index-quantile_005fcauchy"></a>Function: <strong>quantile_cauchy</strong> <em>(<var>q</var>,<var>a</var>,<var>b</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a
\({\it Cauchy}(a,b)\) random variable, with <em>b>0</em>; in other words, this is the inverse of <code>cdf_cauchy</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="random_005fcauchy"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fcauchy"></a><dl>
<dt><a name="index-random_005fcauchy"></a>Function: <strong>random_cauchy</strong> <em>(<var>a</var>,<var>b</var>) <br> <tt>random_cauchy</tt> (<var>a</var>,<var>b</var>,<var>n</var>)</em></dt>
<dd>
<p>Returns a
\({\it Cauchy}(a,b)\) random variate, with <em>b>0</em>. Calling <code>random_cauchy</code> with a third argument <var>n</var>, a random sample of size <var>n</var> will be simulated.
</p>
<p>The implemented algorithm is based on the general inverse method.
</p>
<p>To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
·</div>
</dd></dl>
<a name="Item_003a-distrib_002fnode_002fGumbel-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_238.html#Gumbel-Random-Variable" accesskey="n" rel="next">Gumbel Random Variable</a>, Previous: <a href="maxima_236.html#Laplace-Random-Variable" accesskey="p" rel="previous">Laplace Random Variable</a>, Up: <a href="maxima_220.html#Functions-and-Variables-for-continuous-distributions" accesskey="u" rel="up">Functions and Variables for continuous distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|