File: maxima_241.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (259 lines) | stat: -rw-r--r-- 13,037 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Binomial Random Variable</title>

<meta name="description" content="Maxima 5.47.0 Manual: Binomial Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Binomial Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" rel="up" title="Functions and Variables for discrete distributions">
<link href="maxima_242.html#Poisson-Random-Variable" rel="next" title="Poisson Random Variable">
<link href="maxima_240.html#General-Finite-Discrete-Random-Variable" rel="previous" title="General Finite Discrete Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Binomial-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_242.html#Poisson-Random-Variable" accesskey="n" rel="next">Poisson Random Variable</a>, Previous: <a href="maxima_240.html#General-Finite-Discrete-Random-Variable" accesskey="p" rel="previous">General Finite Discrete Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Binomial-Random-Variable-1"></a>
<h4 class="subsection">52.3.2 Binomial Random Variable</h4>

<p>The <em>binomial distribution</em> with parameters <em>n</em> and <em>p</em>
is a discrete probability distribution.  It consists of <em>n</em>
independent experiments where each experiment consists of a
Boolean-valued outcome where a success occurs with a probablity
<em>p</em>.
</p>
<p>For example, a biased coin that comes up heads with probablity
<em>p</em> is tossed <em>n</em> times.  Then the probability of exactly
<em>k</em> heads in <em>n</em> tosses is given by the binomial
distribution.
</p>
<a name="pdf_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fbinomial"></a><dl>
<dt><a name="index-pdf_005fbinomial"></a>Function: <strong>pdf_binomial</strong> <em>(<var>x</var>,<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the probability function of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The pdf is
$$
f(x; n, p) = {n\choose x} (1-p)^{n-x}p^x
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="cdf_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fbinomial"></a><dl>
<dt><a name="index-cdf_005fbinomial"></a>Function: <strong>cdf_binomial</strong> <em>(<var>x</var>,<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer.
</p>
<p>The cdf is
$$
F(x; n, p) = I_{1-p}(n-\lfloor x \rfloor, \lfloor x \rfloor + 1)
$$</p>
<p>where 
\(I_z(a,b)\) is the <a href="maxima_87.html#beta_005fincomplete_005fregularized">beta_incomplete_regularized</a>
function.
</p>

<div class="example">
<pre class="example">(%i1) load (&quot;distrib&quot;)$
</pre><pre class="example">(%i2) cdf_binomial(5,7,1/6);
                              7775
(%o2)                         ----
                              7776
</pre><pre class="example">(%i3) float(%);
(%o3)                  0.9998713991769548
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="quantile_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fbinomial"></a><dl>
<dt><a name="index-quantile_005fbinomial"></a>Function: <strong>quantile_binomial</strong> <em>(<var>q</var>,<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer; in other words, this is the inverse of <code>cdf_binomial</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="mean_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fmean_005fbinomial"></a><dl>
<dt><a name="index-mean_005fbinomial"></a>Function: <strong>mean_binomial</strong> <em>(<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the mean of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The mean is
$$
E[X] = np
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="var_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fvar_005fbinomial"></a><dl>
<dt><a name="index-var_005fbinomial"></a>Function: <strong>var_binomial</strong> <em>(<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the variance of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The variance is
$$
V[X] = np(1-p)
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="std_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fstd_005fbinomial"></a><dl>
<dt><a name="index-std_005fbinomial"></a>Function: <strong>std_binomial</strong> <em>(<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the standard deviation of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The standard deviation is
$$
D[X] = \sqrt{np(1-p)}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="skewness_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fskewness_005fbinomial"></a><dl>
<dt><a name="index-skewness_005fbinomial"></a>Function: <strong>skewness_binomial</strong> <em>(<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the skewness coefficient of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The skewness coefficient is
$$
SK[X] = {1-2p\over \sqrt{np(1-p)}}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="kurtosis_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002fkurtosis_005fbinomial"></a><dl>
<dt><a name="index-kurtosis_005fbinomial"></a>Function: <strong>kurtosis_binomial</strong> <em>(<var>n</var>,<var>p</var>)</em></dt>
<dd><p>Returns the kurtosis coefficient of a 
\({\it Binomial}(n,p)\) random variable, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The kurtosis coefficient is
$$
KU[X] = {1-6p(1-p)\over np(1-p)}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="random_005fbinomial"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fbinomial"></a><dl>
<dt><a name="index-random_005fbinomial"></a>Function: <strong>random_binomial</strong> <em>(<var>n</var>,<var>p</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>random_binomial</tt> (<var>n</var>,<var>p</var>,<var>m</var>)</em></dt>
<dd>
<p>Returns a 
\({\it Binomial}(n,p)\) random variate, with <em>0 \leq p \leq 1</em> and <em>n</em> a positive integer. Calling <code>random_binomial</code> with a third argument <var>m</var>, a random sample of size <var>m</var> will be simulated.
</p>
<p>The implemented algorithm is based on the one described in Kachitvichyanukul, V. and Schmeiser, B.W. (1988) <var>Binomial Random Variate Generation</var>. Communications of the ACM, 31, Feb., 216.
</p>
<p>To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-distrib_002fnode_002fPoisson-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_242.html#Poisson-Random-Variable" accesskey="n" rel="next">Poisson Random Variable</a>, Previous: <a href="maxima_240.html#General-Finite-Discrete-Random-Variable" accesskey="p" rel="previous">General Finite Discrete Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>