File: maxima_244.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (283 lines) | stat: -rw-r--r-- 12,466 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Geometric Random Variable</title>

<meta name="description" content="Maxima 5.47.0 Manual: Geometric Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Geometric Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" rel="up" title="Functions and Variables for discrete distributions">
<link href="maxima_245.html#Discrete-Uniform-Random-Variable" rel="next" title="Discrete Uniform Random Variable">
<link href="maxima_243.html#Bernoulli-Random-Variable" rel="previous" title="Bernoulli Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Geometric-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="n" rel="next">Discrete Uniform Random Variable</a>, Previous: <a href="maxima_243.html#Bernoulli-Random-Variable" accesskey="p" rel="previous">Bernoulli Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Geometric-Random-Variable-1"></a>
<h4 class="subsection">52.3.5 Geometric Random Variable</h4>

<p>The <em>Geometric distibution</em> is a discrete probability
distribution.  It is the distribution of the number 
Bernoulli trials that fail before the first success.
</p>
<p>Consider flipping a biased coin where heads occurs with probablity
<em>p</em>.   Then the probability of <em>k-1</em> tails in a row followed
by heads is given by the 
\({\it Geometric}(p)\) distribution.
</p>
<a name="pdf_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fgeometric"></a><dl>
<dt><a name="index-pdf_005fgeometric"></a>Function: <strong>pdf_geometric</strong> <em>(<var>x</var>,<var>p</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the probability function of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq 1</em>
</p>
<p>The pdf is
$$
f(x; p) = p(1-p)^x
$$</p>

<p>This is interpreted as the probability of <em>x</em> failures before the first success.
</p>
<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="cdf_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fgeometric"></a><dl>
<dt><a name="index-cdf_005fgeometric"></a>Function: <strong>cdf_geometric</strong> <em>(<var>x</var>,<var>p</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq  1</em>
</p>
<p>The cdf is
$$
1-(1-p)^{1 + \lfloor x \rfloor}
$$</p>

<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="quantile_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fgeometric"></a><dl>
<dt><a name="index-quantile_005fgeometric"></a>Function: <strong>quantile_geometric</strong> <em>(<var>q</var>,<var>p</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p &lt;= 1</em>;
in other words, this is the inverse of <code>cdf_geometric</code>.
Argument <var>q</var> must be an element of <em>[0,1]</em>.
</p>
<p>The probability from which the quantile is derived is defined as <em>p (1 - p)^x</em>.
This is interpreted as the probability of <em>x</em> failures before the first success.
</p>
<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="mean_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fmean_005fgeometric"></a><dl>
<dt><a name="index-mean_005fgeometric"></a>Function: <strong>mean_geometric</strong> <em>(<var>p</var>)</em></dt>
<dd><p>Returns the mean of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq 1</em>.
</p>
<p>The mean is
$$
E[X] = {1\over p} - 1
$$</p>

<p>The probability from which the mean is derived is defined as <em>p (1 - p)^x</em>.
This is interpreted as the probability of <em>x</em> failures before the first success.
</p>
<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="var_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fvar_005fgeometric"></a><dl>
<dt><a name="index-var_005fgeometric"></a>Function: <strong>var_geometric</strong> <em>(<var>p</var>)</em></dt>
<dd><p>Returns the variance of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq 1</em>.
</p>
<p>The variance is
$$
V[X] = {1-p\over p^2}
$$</p>

<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="std_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fstd_005fgeometric"></a><dl>
<dt><a name="index-std_005fgeometric"></a>Function: <strong>std_geometric</strong> <em>(<var>p</var>)</em></dt>
<dd><p>Returns the standard deviation of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq 1</em>.
</p>
$$
D[X] = {\sqrt{1-p} \over p}
$$

<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="skewness_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fskewness_005fgeometric"></a><dl>
<dt><a name="index-skewness_005fgeometric"></a>Function: <strong>skewness_geometric</strong> <em>(<var>p</var>)</em></dt>
<dd><p>Returns the skewness coefficient of a 
\({\it Geometric}(p)\) random variable, with
<em>0 &lt; p \leq 1</em>.
</p>
<p>The skewness coefficient is
$$
SK[X] = {2-p \over \sqrt{1-p}}
$$</p>

<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="kurtosis_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002fkurtosis_005fgeometric"></a><dl>
<dt><a name="index-kurtosis_005fgeometric"></a>Function: <strong>kurtosis_geometric</strong> <em>(<var>p</var>)</em></dt>
<dd><p>Returns the kurtosis coefficient of a geometric random variable  
\({\it Geometric}(p)\), with
<em>0 &lt; p \leq 1</em>.
</p>
<p>The kurtosis coefficient is
$$
KU[X] = {p^2-6p+6 \over 1-p}
$$</p>

<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="random_005fgeometric"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fgeometric"></a><dl>
<dt><a name="index-random_005fgeometric"></a>Function: <strong>random_geometric</strong> <em>(<var>p</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>random_geometric</tt> (<var>p</var>,<var>n</var>)</em></dt>
<dd>
<p><code>random_geometric(<var>p</var>)</code> returns one random sample from a 
\({\it Geometric}(p)\) distribution, with
<em>0 &lt; p &lt;= 1</em>.
</p>
<p><code>random_geometric(<var>p</var>, <var>n</var>)</code> returns a list of <var>n</var> random samples.
</p>
<p>The algorithm is based on simulation of Bernoulli trials.
</p>
<p>The probability from which the random sample is derived is defined as <em>p (1 - p)^x</em>.
This is interpreted as the probability of <em>x</em> failures before the first success.
</p>
<p><code>load(&quot;distrib&quot;)</code> loads this function.
</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-distrib_002fnode_002fDiscrete-Uniform-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="n" rel="next">Discrete Uniform Random Variable</a>, Previous: <a href="maxima_243.html#Bernoulli-Random-Variable" accesskey="p" rel="previous">Bernoulli Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>