1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Hypergeometric Random Variable</title>
<meta name="description" content="Maxima 5.47.0 Manual: Hypergeometric Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Hypergeometric Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" rel="up" title="Functions and Variables for discrete distributions">
<link href="maxima_247.html#Negative-Binomial-Random-Variable" rel="next" title="Negative Binomial Random Variable">
<link href="maxima_245.html#Discrete-Uniform-Random-Variable" rel="previous" title="Discrete Uniform Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hypergeometric-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_247.html#Negative-Binomial-Random-Variable" accesskey="n" rel="next">Negative Binomial Random Variable</a>, Previous: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="p" rel="previous">Discrete Uniform Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hypergeometric-Random-Variable-1"></a>
<h4 class="subsection">52.3.7 Hypergeometric Random Variable</h4>
<p>The <em>hypergeometric distribution</em> is a discrete probability
distribution.
</p>
<p>Let <em>n_1</em> be the number of objects of a class
<em>A</em> and <em>n_2</em> be the number of objects of class <em>B</em>.
We take out <em>n</em> objects, <em>without</em> replacment. Then the
hypergeometric distribution is the probability that exactly <em>k</em>
objects are from class <em>A</em>. Of course <em>n \leq n_1 + n_2</em>.
</p>
<a name="pdf_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fhypergeometric"></a><dl>
<dt><a name="index-pdf_005fhypergeometric"></a>Function: <strong>pdf_hypergeometric</strong> <em>(<var>x</var>,<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the probability function of a
\({\it Hypergeometric}(n1,n2,n)\)</p>
<p>random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative
integers and <em>n\leq n_1+n_2</em>.
Being <em>n_1</em> the number of objects of class A, <em>n_2</em> the number of objects of class B, and
<em>n</em> the size of the sample without replacement, this function returns the probability of
event "exactly <var>x</var> objects are of class A".
</p>
<p>To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The pdf is
$$
f(x; n_1, n_2, n) = {\displaystyle{n_1\choose x} {n_2 \choose n-x}
\over \displaystyle{n_2+n_1 \choose n}}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="cdf_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fhypergeometric"></a><dl>
<dt><a name="index-cdf_005fhypergeometric"></a>Function: <strong>cdf_hypergeometric</strong> <em>(<var>x</var>,<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a
\({\it Hypergeometric}(n1,n2,n)\)</p>
<p>random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative
integers and <em>n\leq n_1+n_2</em>.
See <code>pdf_hypergeometric</code> for a more complete description.
</p>
<p>To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The cdf is
$$
F(x; n_1, n_2, n) = {n_2+n_1\choose n}^{-1}
\sum_{k=0}^{\lfloor x \rfloor} {n_1 \choose k} {n_2 \choose n - k}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="quantile_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fhypergeometric"></a><dl>
<dt><a name="index-quantile_005fhypergeometric"></a>Function: <strong>quantile_hypergeometric</strong> <em>(<var>q</var>,<var>n1</var>,<var>n2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a
\({\it Hypergeometric}(n1,n2,n)\) random
variable, with <var>n1</var>, <var>n2</var> and <var>n</var> non negative integers
and <em>n\leq n1+n2</em>; in other words, this is the inverse of <code>cdf_hypergeometric</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="mean_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fmean_005fhypergeometric"></a><dl>
<dt><a name="index-mean_005fhypergeometric"></a>Function: <strong>mean_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the mean of a discrete uniform random variable
\({\it Hypergeometric}(n_1,n_2,n)\), with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n_1+n_2</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The mean is
$$
E[X] = {n n_1\over n_2+n_1}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="var_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fvar_005fhypergeometric"></a><dl>
<dt><a name="index-var_005fhypergeometric"></a>Function: <strong>var_hypergeometric</strong> <em>(<var>n1</var>,<var>n2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the variance of a hypergeometric random variable
\({\it Hypergeometric}(n_1,n_2,n)\), with <em>n1</em>, <em>n2</em> and <em>n</em> non negative integers and <em>n<=n1+n2</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The variance is
$$
V[X] = {n n_1 n_2 (n_1 + n_2 - n)
\over
(n_1 + n_2 - 1) (n_1 + n_2)^2}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="std_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fstd_005fhypergeometric"></a><dl>
<dt><a name="index-std_005fhypergeometric"></a>Function: <strong>std_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the standard deviation of a
\({\it Hypergeometric}(n_1,n_2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n_1+n_2</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The standard deviation is
$$
D[X] = {1\over n_1+n_2}\sqrt{n n_1 n_2 (n_1 + n_2 - n) \over n_1+n_2-1}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="skewness_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fskewness_005fhypergeometric"></a><dl>
<dt><a name="index-skewness_005fhypergeometric"></a>Function: <strong>skewness_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the skewness coefficient of a
\({\it Hypergeometric}(n1,n2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n1+n2</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The skewness coefficient is
$$
SK[X] = {(n_2-n_2)(n_1+n_2-2n)\over n_1+n_2-2}
\sqrt{n_1+n_2-1 \over n n_1 n_2 (n_1+n_2-n)}
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="kurtosis_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fkurtosis_005fhypergeometric"></a><dl>
<dt><a name="index-kurtosis_005fhypergeometric"></a>Function: <strong>kurtosis_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the kurtosis coefficient of a
\({\it Hypergeometric}(n_1,n_2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n1+n2</em>. To make use of this function, write first <code>load("distrib")</code>.
</p>
<p>The kurtosis coefficient is
$$
\eqalign{
KU[X] = &
\left[{C(1)C(0)^2
\over
n n_1 n_2 C(3)C(2)C(n)}\right. \cr
& \times
\left.\left(
{3n_1n_2\left((n-2)C(0)^2+6nC(n)-n^2C(0)\right)
\over
C(0)^2
}
-6nC(n) + C(0)C(-1)
\right)\right] \cr
&-3
}
$$</p>
<p>where
\(C(k) = n_1+n_2-k\).
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·</div>
</dd></dl>
<a name="random_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fhypergeometric"></a><dl>
<dt><a name="index-random_005fhypergeometric"></a>Function: <strong>random_hypergeometric</strong> <em>(<var>n1</var>,<var>n2</var>,<var>n</var>) <br> <tt>random_hypergeometric</tt> (<var>n1</var>,<var>n2</var>,<var>n</var>,<var>m</var>)</em></dt>
<dd>
<p>Returns a
\({\it Hypergeometric}(n1,n2,n)\) random variate, with <var>n1</var>, <var>n2</var> and <var>n</var> non negative integers and <em>n<=n1+n2</em>. Calling <code>random_hypergeometric</code> with a fourth argument <var>m</var>, a random sample of size <var>m</var> will be simulated.
</p>
<p>Algorithm described in Kachitvichyanukul, V., Schmeiser, B.W. (1985) <var>Computer generation of hypergeometric random variates.</var> Journal of Statistical Computation and Simulation 22, 127-145.
</p>
<p>To make use of this function, write first <code>load("distrib")</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
·<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
·</div>
</dd></dl>
<a name="Item_003a-distrib_002fnode_002fNegative-Binomial-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_247.html#Negative-Binomial-Random-Variable" accesskey="n" rel="next">Negative Binomial Random Variable</a>, Previous: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="p" rel="previous">Discrete Uniform Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|