File: maxima_246.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (279 lines) | stat: -rw-r--r-- 14,360 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Hypergeometric Random Variable</title>

<meta name="description" content="Maxima 5.47.0 Manual: Hypergeometric Random Variable">
<meta name="keywords" content="Maxima 5.47.0 Manual: Hypergeometric Random Variable">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" rel="up" title="Functions and Variables for discrete distributions">
<link href="maxima_247.html#Negative-Binomial-Random-Variable" rel="next" title="Negative Binomial Random Variable">
<link href="maxima_245.html#Discrete-Uniform-Random-Variable" rel="previous" title="Discrete Uniform Random Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hypergeometric-Random-Variable"></a>
<div class="header">
<p>
Next: <a href="maxima_247.html#Negative-Binomial-Random-Variable" accesskey="n" rel="next">Negative Binomial Random Variable</a>, Previous: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="p" rel="previous">Discrete Uniform Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hypergeometric-Random-Variable-1"></a>
<h4 class="subsection">52.3.7 Hypergeometric Random Variable</h4>

<p>The <em>hypergeometric distribution</em> is a discrete probability
distribution.
</p>
<p>Let <em>n_1</em> be the number of objects of a class
<em>A</em> and <em>n_2</em> be the number of objects of class <em>B</em>.
We take out <em>n</em> objects, <em>without</em> replacment.  Then the
hypergeometric distribution is the probability that exactly <em>k</em>
objects are from class <em>A</em>.  Of course <em>n \leq n_1 + n_2</em>.
</p>
<a name="pdf_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fpdf_005fhypergeometric"></a><dl>
<dt><a name="index-pdf_005fhypergeometric"></a>Function: <strong>pdf_hypergeometric</strong> <em>(<var>x</var>,<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the probability function of a 
\({\it Hypergeometric}(n1,n2,n)\)</p>
<p>random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative
integers and <em>n\leq n_1+n_2</em>.
Being <em>n_1</em> the number of objects of class A, <em>n_2</em> the number of objects of class B, and
<em>n</em> the size of the sample without replacement, this function returns the probability of
event &quot;exactly <var>x</var> objects are of class A&quot;. 
</p>
<p>To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The pdf is
$$
f(x; n_1, n_2, n) = {\displaystyle{n_1\choose x} {n_2 \choose n-x}
\over \displaystyle{n_2+n_1 \choose n}}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="cdf_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fcdf_005fhypergeometric"></a><dl>
<dt><a name="index-cdf_005fhypergeometric"></a>Function: <strong>cdf_hypergeometric</strong> <em>(<var>x</var>,<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the value at <var>x</var> of the distribution function of a 
\({\it Hypergeometric}(n1,n2,n)\)</p> 
<p>random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative
integers and <em>n\leq n_1+n_2</em>. 
See <code>pdf_hypergeometric</code> for a more complete description.
</p>
<p>To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The cdf is
$$
F(x; n_1, n_2, n) = {n_2+n_1\choose n}^{-1}
\sum_{k=0}^{\lfloor x \rfloor} {n_1 \choose k} {n_2 \choose n - k}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="quantile_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fquantile_005fhypergeometric"></a><dl>
<dt><a name="index-quantile_005fhypergeometric"></a>Function: <strong>quantile_hypergeometric</strong> <em>(<var>q</var>,<var>n1</var>,<var>n2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the <var>q</var>-quantile of a 
\({\it Hypergeometric}(n1,n2,n)\) random
variable, with <var>n1</var>, <var>n2</var> and <var>n</var> non negative integers
and <em>n\leq n1+n2</em>; in other words, this is the inverse of <code>cdf_hypergeometric</code>. Argument <var>q</var> must be an element of <em>[0,1]</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="mean_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fmean_005fhypergeometric"></a><dl>
<dt><a name="index-mean_005fhypergeometric"></a>Function: <strong>mean_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the mean of a discrete uniform random variable 
\({\it Hypergeometric}(n_1,n_2,n)\), with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n_1+n_2</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The mean is
$$
E[X] = {n n_1\over n_2+n_1}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="var_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fvar_005fhypergeometric"></a><dl>
<dt><a name="index-var_005fhypergeometric"></a>Function: <strong>var_hypergeometric</strong> <em>(<var>n1</var>,<var>n2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the variance of a hypergeometric  random variable 
\({\it Hypergeometric}(n_1,n_2,n)\), with <em>n1</em>, <em>n2</em> and <em>n</em> non negative integers and <em>n&lt;=n1+n2</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The variance is
$$
V[X] = {n n_1 n_2 (n_1 + n_2 - n)
 \over
 (n_1 + n_2 - 1) (n_1 + n_2)^2}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="std_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fstd_005fhypergeometric"></a><dl>
<dt><a name="index-std_005fhypergeometric"></a>Function: <strong>std_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the standard deviation of a 
\({\it Hypergeometric}(n_1,n_2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n_1+n_2</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The standard deviation is
$$
D[X] = {1\over n_1+n_2}\sqrt{n n_1 n_2 (n_1 + n_2 - n) \over n_1+n_2-1}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="skewness_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fskewness_005fhypergeometric"></a><dl>
<dt><a name="index-skewness_005fhypergeometric"></a>Function: <strong>skewness_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the skewness coefficient of a 
\({\it Hypergeometric}(n1,n2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n1+n2</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The skewness coefficient is
$$
SK[X] = {(n_2-n_2)(n_1+n_2-2n)\over n_1+n_2-2}
\sqrt{n_1+n_2-1 \over n n_1 n_2 (n_1+n_2-n)}
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="kurtosis_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002fkurtosis_005fhypergeometric"></a><dl>
<dt><a name="index-kurtosis_005fhypergeometric"></a>Function: <strong>kurtosis_hypergeometric</strong> <em>(<var>n_1</var>,<var>n_2</var>,<var>n</var>)</em></dt>
<dd><p>Returns the kurtosis coefficient of a 
\({\it Hypergeometric}(n_1,n_2,n)\) random variable, with <em>n_1</em>, <em>n_2</em> and <em>n</em> non negative integers and <em>n\leq n1+n2</em>. To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<p>The kurtosis coefficient is
$$

\eqalign{
KU[X] = &
 \left[{C(1)C(0)^2
   \over
  n n_1 n_2 C(3)C(2)C(n)}\right. \cr
  & \times 
  \left.\left(
    {3n_1n_2\left((n-2)C(0)^2+6nC(n)-n^2C(0)\right)
    \over
    C(0)^2
    }
    -6nC(n) + C(0)C(-1)
  \right)\right] \cr
  &-3
}
$$</p>
<p>where 
\(C(k) = n_1+n_2-k\).
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;</div>
</dd></dl>


<a name="random_005fhypergeometric"></a><a name="Item_003a-distrib_002fdeffn_002frandom_005fhypergeometric"></a><dl>
<dt><a name="index-random_005fhypergeometric"></a>Function: <strong>random_hypergeometric</strong> <em>(<var>n1</var>,<var>n2</var>,<var>n</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>random_hypergeometric</tt> (<var>n1</var>,<var>n2</var>,<var>n</var>,<var>m</var>)</em></dt>
<dd>
<p>Returns a 
\({\it Hypergeometric}(n1,n2,n)\) random variate, with <var>n1</var>, <var>n2</var> and <var>n</var> non negative integers and <em>n&lt;=n1+n2</em>. Calling <code>random_hypergeometric</code> with a fourth argument <var>m</var>, a random sample of size <var>m</var> will be simulated.
</p>
<p>Algorithm described in Kachitvichyanukul, V., Schmeiser, B.W. (1985) <var>Computer generation of hypergeometric random variates.</var> Journal of Statistical Computation and Simulation 22, 127-145.
</p>
<p>To make use of this function, write first <code>load(&quot;distrib&quot;)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-distrib">Package distrib</a>
&middot;<a href="maxima_424.html#Category_003a-Random-numbers">Random numbers</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-distrib_002fnode_002fNegative-Binomial-Random-Variable"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_247.html#Negative-Binomial-Random-Variable" accesskey="n" rel="next">Negative Binomial Random Variable</a>, Previous: <a href="maxima_245.html#Discrete-Uniform-Random-Variable" accesskey="p" rel="previous">Discrete Uniform Random Variable</a>, Up: <a href="maxima_239.html#Functions-and-Variables-for-discrete-distributions" accesskey="u" rel="up">Functions and Variables for discrete distributions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>