1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems</title>
<meta name="description" content="Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems">
<meta name="keywords" content="Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_256.html#dynamics_002dpkg" rel="up" title="dynamics-pkg">
<link href="maxima_259.html#Visualization-with-VTK" rel="next" title="Visualization with VTK">
<link href="maxima_257.html#The-dynamics-package" rel="previous" title="The dynamics package">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Graphical-analysis-of-discrete-dynamical-systems"></a>
<div class="header">
<p>
Next: <a href="maxima_259.html#Visualization-with-VTK" accesskey="n" rel="next">Visualization with VTK</a>, Previous: <a href="maxima_257.html#The-dynamics-package" accesskey="p" rel="previous">The dynamics package</a>, Up: <a href="maxima_256.html#dynamics_002dpkg" accesskey="u" rel="up">dynamics-pkg</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Graphical-analysis-of-discrete-dynamical-systems-1"></a>
<h3 class="section">55.2 Graphical analysis of discrete dynamical systems</h3>
<a name="chaosgame"></a><a name="Item_003a-dynamics_002fdeffn_002fchaosgame"></a><dl>
<dt><a name="index-chaosgame"></a>Function: <strong>chaosgame</strong> <em>([[<var>x1</var>, <var>y1</var>]…[<var>xm</var>, <var>ym</var>]], [<var>x0</var>, <var>y0</var>], <var>b</var>, <var>n</var>, <var>options</var>, …);</em></dt>
<dd>
<p>Implements the so-called chaos game: the initial point (<var>x0</var>,
<var>y0</var>) is plotted and then one of the <var>m</var> points
[<var>x1</var>, <var>y1</var>]…<var>xm</var>, <var>ym</var>]
will be selected at random. The next point plotted will be on the
segment from the previous point plotted to the point chosen randomly, at a
distance from the random point which will be <var>b</var> times that segment’s
length. The procedure is repeated <var>n</var> times. The options are the
same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. A plot of Sierpinsky’s triangle:
</p>
<div class="example">
<pre class="example">(%i1) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,
30000, [style, dots]);
</pre></div>
<img src="./figures/dynamics7.png" alt="./figures/dynamics7">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="evolution"></a><a name="Item_003a-dynamics_002fdeffn_002fevolution"></a><dl>
<dt><a name="index-evolution"></a>Function: <strong>evolution</strong> <em>(<var>F</var>, <var>y0</var>, <var>n</var>, …, <var>options</var>, …);</em></dt>
<dd>
<p>Draws <var>n+1</var> points in a two-dimensional graph, where the horizontal
coordinates of the points are the integers 0, 1, 2, ..., <var>n</var>, and
the vertical coordinates are the corresponding values <var>y(n)</var> of the
sequence defined by the recurrence relation
</p><div class="example">
<pre class="example"> y(n+1) = F(y(n))
</pre></div>
<p>With initial value <var>y(0)</var> equal to <var>y0</var>. <var>F</var> must be an
expression that depends only on one variable (in the example, it
depend on <var>y</var>, but any other variable can be used),
<var>y0</var> must be a real number and <var>n</var> must be a positive integer.
This function accepts the same options as <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>.
</p>
<div class="example">
<pre class="example">(%i1) evolution(cos(y), 2, 11);
</pre></div>
<img src="./figures/dynamics1.png" alt="./figures/dynamics1">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="evolution2d"></a><a name="Item_003a-dynamics_002fdeffn_002fevolution2d"></a><dl>
<dt><a name="index-evolution2d"></a>Function: <strong>evolution2d</strong> <em>([<var>F</var>, <var>G</var>], [<var>u</var>, <var>v</var>], [<var>u0</var>, <var>y0</var>], <var>n</var>, <var>options</var>, …);</em></dt>
<dd>
<p>Shows, in a two-dimensional plot, the first <var>n+1</var> points in the
sequence of points defined by the two-dimensional discrete dynamical
system with recurrence relations
</p><div class="example">
<pre class="example"> u(n+1) = F(u(n), v(n)) v(n+1) = G(u(n), v(n))
</pre></div>
<p>With initial values <var>u0</var> and <var>v0</var>. <var>F</var> and <var>G</var> must be
two expressions that depend only on two variables, <var>u</var> and
<var>v</var>, which must be named explicitly in a list. The options are the
same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. Evolution of a two-dimensional discrete dynamical system:
</p>
<div class="example">
<pre class="example">(%i1) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$
(%i2) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$
(%i3) evolution2d([f,g], [x,y], [-0.5,0], 50000, [style,dots]);
</pre></div>
<img src="./figures/dynamics5.png" alt="./figures/dynamics5">
<p>And an enlargement of a small region in that fractal:
</p>
<div class="example">
<pre class="example">(%i9) evolution2d([f,g], [x,y], [-0.5,0], 300000, [x,-0.8,-0.6],
[y,-0.4,-0.2], [style, dots]);
</pre></div>
<img src="./figures/dynamics6.png" alt="./figures/dynamics6">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="ifs"></a><a name="Item_003a-dynamics_002fdeffn_002fifs"></a><dl>
<dt><a name="index-ifs"></a>Function: <strong>ifs</strong> <em>([<var>r1</var>, …, <var>rm</var>], [<var>A1</var>,…, <var>Am</var>], [[<var>x1</var>, <var>y1</var>], …, [<var>xm</var>, <var>ym</var>]], [<var>x0</var>, <var>y0</var>], <var>n</var>, <var>options</var>, …);</em></dt>
<dd>
<p>Implements the Iterated Function System method. This method is similar
to the method described in the function <code><a href="#chaosgame">chaosgame</a></code>. but instead of
shrinking the segment from the current point to the randomly chosen
point, the 2 components of that segment will be multiplied by the 2 by 2
matrix <var>Ai</var> that corresponds to the point chosen randomly.
</p>
<p>The random choice of one of the <var>m</var> attractive points can be made
with a non-uniform probability distribution defined by the weights
<var>r1</var>,...,<var>rm</var>. Those weights are given in cumulative form; for
instance if there are 3 points with probabilities 0.2, 0.5 and 0.3, the
weights <var>r1</var>, <var>r2</var> and <var>r3</var> could be 2, 7 and 10. The
options are the same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. Barnsley’s fern, obtained with 4 matrices and 4 points:
</p>
<div class="example">
<pre class="example">(%i1) a1: matrix([0.85,0.04],[-0.04,0.85])$
(%i2) a2: matrix([0.2,-0.26],[0.23,0.22])$
(%i3) a3: matrix([-0.15,0.28],[0.26,0.24])$
(%i4) a4: matrix([0,0],[0,0.16])$
(%i5) p1: [0,1.6]$
(%i6) p2: [0,1.6]$
(%i7) p3: [0,0.44]$
(%i8) p4: [0,0]$
(%i9) w: [85,92,99,100]$
(%i10) ifs(w, [a1,a2,a3,a4], [p1,p2,p3,p4], [5,0], 50000, [style,dots]);
</pre></div>
<img src="./figures/dynamics8.png" alt="./figures/dynamics8">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="orbits"></a><a name="Item_003a-dynamics_002fdeffn_002forbits"></a><dl>
<dt><a name="index-orbits"></a>Function: <strong>orbits</strong> <em>(<var>F</var>, <var>y0</var>, <var>n1</var>, <var>n2</var>, [<var>x</var>, <var>x0</var>, <var>xf</var>, <var>xstep</var>], <var>options</var>, …);</em></dt>
<dd>
<p>Draws the orbits diagram for a family of one-dimensional
discrete dynamical systems, with one parameter <var>x</var>; that kind of
diagram is used to study the bifurcations of an one-dimensional discrete
system.
</p>
<p>The function <var>F(y)</var> defines a sequence with a starting value of
<var>y0</var>, as in the case of the function <code>evolution</code>, but in this
case that function will also depend on a parameter <var>x</var> that will
take values in the interval from <var>x0</var> to <var>xf</var> with increments of
<var>xstep</var>. Each value used for the parameter <var>x</var> is shown on the
horizontal axis. The vertical axis will show the <var>n2</var> values
of the sequence <var>y(n1+1)</var>,..., <var>y(n1+n2+1)</var> obtained after letting
the sequence evolve <var>n1</var> iterations. In addition to the options
accepted by <code><a href="maxima_68.html#plot2d">plot2d</a></code>, it accepts an option <var>pixels</var> that
sets up the maximum number of different points that will be represented
in the vertical direction.
</p>
<p><strong>Example</strong>. Orbits diagram of the quadratic map, with a parameter
<var>a</var>:
</p>
<div class="example">
<pre class="example">(%i1) orbits(x^2+a, 0, 50, 200, [a, -2, 0.25], [style, dots]);
</pre></div>
<img src="./figures/dynamics3.png" alt="./figures/dynamics3">
<p>To enlarge the region around the lower bifurcation near x <code>=</code> -1.25 use:
</p><div class="example">
<pre class="example">(%i2) orbits(x^2+a, 0, 100, 400, [a,-1,-1.53], [x,-1.6,-0.8],
[nticks, 400], [style,dots]);
</pre></div>
<img src="./figures/dynamics4.png" alt="./figures/dynamics4">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="staircase"></a><a name="Item_003a-dynamics_002fdeffn_002fstaircase"></a><dl>
<dt><a name="index-staircase"></a>Function: <strong>staircase</strong> <em>(<var>F</var>, <var>y0</var>, <var>n</var>,<var>options</var>,…);</em></dt>
<dd>
<p>Draws a staircase diagram for the sequence defined by the recurrence
relation
</p><div class="example">
<pre class="example"> y(n+1) = F(y(n))
</pre></div>
<p>The interpretation and allowed values of the input parameters is the
same as for the function <code><a href="#evolution">evolution</a></code>. A staircase diagram consists
of a plot of the function <var>F(y)</var>, together with the line <var>G(y)</var>
<code>=</code> <var>y</var>. A vertical segment is drawn from the point (<var>y0</var>,
<var>y0</var>) on that line until the point where it intersects the function
<var>F</var>. From that point a horizontal segment is drawn until it reaches
the point (<var>y1</var>, <var>y1</var>) on the line, and the procedure is
repeated <var>n</var> times until the point (<var>yn</var>, <var>yn</var>) is
reached. The options are the same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>.
</p>
<div class="example">
<pre class="example">(%i1) staircase(cos(y), 1, 11, [y, 0, 1.2]);
</pre></div>
<img src="./figures/dynamics2.png" alt="./figures/dynamics2">
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
·<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
·</div>
</dd></dl>
<a name="Item_003a-dynamics_002fnode_002fVisualization-with-VTK"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_259.html#Visualization-with-VTK" accesskey="n" rel="next">Visualization with VTK</a>, Previous: <a href="maxima_257.html#The-dynamics-package" accesskey="p" rel="previous">The dynamics package</a>, Up: <a href="maxima_256.html#dynamics_002dpkg" accesskey="u" rel="up">dynamics-pkg</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|