File: maxima_258.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (307 lines) | stat: -rw-r--r-- 15,767 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems</title>

<meta name="description" content="Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems">
<meta name="keywords" content="Maxima 5.47.0 Manual: Graphical analysis of discrete dynamical systems">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_256.html#dynamics_002dpkg" rel="up" title="dynamics-pkg">
<link href="maxima_259.html#Visualization-with-VTK" rel="next" title="Visualization with VTK">
<link href="maxima_257.html#The-dynamics-package" rel="previous" title="The dynamics package">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Graphical-analysis-of-discrete-dynamical-systems"></a>
<div class="header">
<p>
Next: <a href="maxima_259.html#Visualization-with-VTK" accesskey="n" rel="next">Visualization with VTK</a>, Previous: <a href="maxima_257.html#The-dynamics-package" accesskey="p" rel="previous">The dynamics package</a>, Up: <a href="maxima_256.html#dynamics_002dpkg" accesskey="u" rel="up">dynamics-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Graphical-analysis-of-discrete-dynamical-systems-1"></a>
<h3 class="section">55.2 Graphical analysis of discrete dynamical systems</h3>

<a name="chaosgame"></a><a name="Item_003a-dynamics_002fdeffn_002fchaosgame"></a><dl>
<dt><a name="index-chaosgame"></a>Function: <strong>chaosgame</strong> <em>([[<var>x1</var>, <var>y1</var>]&hellip;[<var>xm</var>, <var>ym</var>]], [<var>x0</var>, <var>y0</var>], <var>b</var>, <var>n</var>, <var>options</var>, &hellip;);</em></dt>
<dd>
<p>Implements the so-called chaos game: the initial point (<var>x0</var>,
<var>y0</var>) is plotted and then one of the <var>m</var> points
[<var>x1</var>, <var>y1</var>]&hellip;<var>xm</var>, <var>ym</var>]
will be selected at random. The next point plotted will be on the
segment from the previous point plotted to the point chosen randomly, at a
distance from the random point which will be <var>b</var> times that segment&rsquo;s
length. The procedure is repeated <var>n</var> times. The options are the
same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. A plot of Sierpinsky&rsquo;s triangle:
</p>
<div class="example">
<pre class="example">(%i1) chaosgame([[0, 0], [1, 0], [0.5, sqrt(3)/2]], [0.1, 0.1], 1/2,
                 30000, [style, dots]);
</pre></div>

<img src="./figures/dynamics7.png" alt="./figures/dynamics7">

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="evolution"></a><a name="Item_003a-dynamics_002fdeffn_002fevolution"></a><dl>
<dt><a name="index-evolution"></a>Function: <strong>evolution</strong> <em>(<var>F</var>, <var>y0</var>, <var>n</var>,  &hellip;, <var>options</var>, &hellip;);</em></dt>
<dd>
<p>Draws <var>n+1</var> points in a two-dimensional graph, where the horizontal
coordinates of the points are the integers 0, 1, 2, ..., <var>n</var>, and
the vertical coordinates are the corresponding values <var>y(n)</var> of the
sequence defined by the recurrence relation
</p><div class="example">
<pre class="example">        y(n+1) = F(y(n))
</pre></div>

<p>With initial value <var>y(0)</var> equal to <var>y0</var>. <var>F</var> must be an
expression that depends only on one variable (in the example, it
depend on <var>y</var>, but any other variable can be used),
<var>y0</var> must be a real number and <var>n</var> must be a positive integer.
 This function accepts the same options as <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>.
</p>
<div class="example">
<pre class="example">(%i1) evolution(cos(y), 2, 11);
</pre></div>
<img src="./figures/dynamics1.png" alt="./figures/dynamics1">


<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="evolution2d"></a><a name="Item_003a-dynamics_002fdeffn_002fevolution2d"></a><dl>
<dt><a name="index-evolution2d"></a>Function: <strong>evolution2d</strong> <em>([<var>F</var>, <var>G</var>], [<var>u</var>, <var>v</var>], [<var>u0</var>, <var>y0</var>], <var>n</var>, <var>options</var>, &hellip;);</em></dt>
<dd>
<p>Shows, in a two-dimensional plot, the first <var>n+1</var> points in the
sequence of points defined by the two-dimensional discrete dynamical
system with recurrence relations
</p><div class="example">
<pre class="example">        u(n+1) = F(u(n), v(n))    v(n+1) = G(u(n), v(n))
</pre></div>

<p>With initial values <var>u0</var> and <var>v0</var>. <var>F</var> and <var>G</var> must be
two expressions that depend only on two variables, <var>u</var> and
<var>v</var>, which must be named explicitly in a list. The options are the
same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. Evolution of a two-dimensional discrete dynamical system:
</p>
<div class="example">
<pre class="example">(%i1) f: 0.6*x*(1+2*x)+0.8*y*(x-1)-y^2-0.9$
(%i2) g: 0.1*x*(1-6*x+4*y)+0.1*y*(1+9*y)-0.4$
(%i3) evolution2d([f,g], [x,y], [-0.5,0], 50000, [style,dots]);
</pre></div>

<img src="./figures/dynamics5.png" alt="./figures/dynamics5">

<p>And an enlargement of a small region in that fractal:
</p>
<div class="example">
<pre class="example">(%i9) evolution2d([f,g], [x,y], [-0.5,0], 300000, [x,-0.8,-0.6],
                  [y,-0.4,-0.2], [style, dots]);
</pre></div>

<img src="./figures/dynamics6.png" alt="./figures/dynamics6">

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="ifs"></a><a name="Item_003a-dynamics_002fdeffn_002fifs"></a><dl>
<dt><a name="index-ifs"></a>Function: <strong>ifs</strong> <em>([<var>r1</var>, &hellip;, <var>rm</var>], [<var>A1</var>,&hellip;, <var>Am</var>], [[<var>x1</var>, <var>y1</var>], &hellip;, [<var>xm</var>, <var>ym</var>]], [<var>x0</var>, <var>y0</var>], <var>n</var>, <var>options</var>, &hellip;);</em></dt>
<dd>
<p>Implements the Iterated Function System method. This method is similar
to the method described in the function <code><a href="#chaosgame">chaosgame</a></code>. but instead of
shrinking the segment from the current point to the randomly chosen
point, the 2 components of that segment will be multiplied by the 2 by 2
matrix <var>Ai</var> that corresponds to the point chosen randomly.
</p>
<p>The random choice of one of the <var>m</var> attractive points can be made
with a non-uniform probability distribution defined by the weights
<var>r1</var>,...,<var>rm</var>. Those weights are given in cumulative form; for
instance if there are 3 points with probabilities 0.2, 0.5 and 0.3, the
weights <var>r1</var>, <var>r2</var> and <var>r3</var> could be 2, 7 and 10. The
options are the same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>. Barnsley&rsquo;s fern, obtained with 4 matrices and 4 points:
</p>
<div class="example">
<pre class="example">(%i1) a1: matrix([0.85,0.04],[-0.04,0.85])$
(%i2) a2: matrix([0.2,-0.26],[0.23,0.22])$
(%i3) a3: matrix([-0.15,0.28],[0.26,0.24])$
(%i4) a4: matrix([0,0],[0,0.16])$
(%i5) p1: [0,1.6]$
(%i6) p2: [0,1.6]$
(%i7) p3: [0,0.44]$
(%i8) p4: [0,0]$
(%i9) w: [85,92,99,100]$
(%i10) ifs(w, [a1,a2,a3,a4], [p1,p2,p3,p4], [5,0], 50000, [style,dots]);
</pre></div>

<img src="./figures/dynamics8.png" alt="./figures/dynamics8">

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="orbits"></a><a name="Item_003a-dynamics_002fdeffn_002forbits"></a><dl>
<dt><a name="index-orbits"></a>Function: <strong>orbits</strong> <em>(<var>F</var>, <var>y0</var>, <var>n1</var>, <var>n2</var>, [<var>x</var>, <var>x0</var>, <var>xf</var>, <var>xstep</var>], <var>options</var>, &hellip;);</em></dt>
<dd>
<p>Draws the orbits diagram for a family of one-dimensional
discrete dynamical systems, with one parameter <var>x</var>; that kind of
diagram is used to study the bifurcations of an one-dimensional discrete
system.
</p>
<p>The function <var>F(y)</var> defines a sequence with a starting value of
<var>y0</var>, as in the case of the function <code>evolution</code>, but in this
case that function will also depend on a parameter <var>x</var> that will
take values in the interval from <var>x0</var> to <var>xf</var> with increments of
<var>xstep</var>. Each value used for the parameter <var>x</var> is shown on the
horizontal axis. The vertical axis will show the <var>n2</var> values
of the sequence <var>y(n1+1)</var>,..., <var>y(n1+n2+1)</var> obtained after letting
the sequence evolve <var>n1</var> iterations.  In addition to the options
accepted by <code><a href="maxima_68.html#plot2d">plot2d</a></code>, it accepts an option <var>pixels</var> that
sets up the maximum number of different points that will be represented
in the vertical direction.
</p>
<p><strong>Example</strong>. Orbits diagram of the quadratic map, with a parameter
<var>a</var>:
</p>
<div class="example">
<pre class="example">(%i1) orbits(x^2+a, 0, 50, 200, [a, -2, 0.25], [style, dots]);
</pre></div>

<img src="./figures/dynamics3.png" alt="./figures/dynamics3">

<p>To enlarge the region around the lower bifurcation near x <code>=</code> -1.25 use:
</p><div class="example">
<pre class="example">(%i2) orbits(x^2+a, 0, 100, 400, [a,-1,-1.53], [x,-1.6,-0.8],
             [nticks, 400], [style,dots]);
</pre></div>

<img src="./figures/dynamics4.png" alt="./figures/dynamics4">

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="staircase"></a><a name="Item_003a-dynamics_002fdeffn_002fstaircase"></a><dl>
<dt><a name="index-staircase"></a>Function: <strong>staircase</strong> <em>(<var>F</var>, <var>y0</var>, <var>n</var>,<var>options</var>,&hellip;);</em></dt>
<dd>
<p>Draws a staircase diagram for the sequence defined by the recurrence
relation
</p><div class="example">
<pre class="example">        y(n+1) = F(y(n))
</pre></div>

<p>The interpretation and allowed values of the input parameters is the
same as for the function <code><a href="#evolution">evolution</a></code>. A staircase diagram consists
of a plot of the function <var>F(y)</var>, together with the line <var>G(y)</var>
<code>=</code> <var>y</var>. A vertical segment is drawn from the point (<var>y0</var>,
<var>y0</var>) on that line until the point where it intersects the function
<var>F</var>. From that point a horizontal segment is drawn until it reaches
the point (<var>y1</var>, <var>y1</var>) on the line, and the procedure is
repeated <var>n</var> times until the point (<var>yn</var>, <var>yn</var>) is
reached. The options are the same as for <code><a href="maxima_68.html#plot2d">plot2d</a></code>.
</p>
<p><strong>Example</strong>.
</p>
<div class="example">
<pre class="example">(%i1) staircase(cos(y), 1, 11, [y, 0, 1.2]);
</pre></div>
<img src="./figures/dynamics2.png" alt="./figures/dynamics2">

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-dynamics">Package dynamics</a>
&middot;<a href="maxima_424.html#Category_003a-Plotting">Plotting</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-dynamics_002fnode_002fVisualization-with-VTK"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_259.html#Visualization-with-VTK" accesskey="n" rel="next">Visualization with VTK</a>, Previous: <a href="maxima_257.html#The-dynamics-package" accesskey="p" rel="previous">The dynamics package</a>, Up: <a href="maxima_256.html#dynamics_002dpkg" accesskey="u" rel="up">dynamics-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>