File: maxima_290.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (700 lines) | stat: -rw-r--r-- 35,271 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for grobner</title>

<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for grobner">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for grobner">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_toc.html#Top" rel="up" title="Top">
<link href="maxima_291.html#hompack_002dpkg" rel="next" title="hompack-pkg">
<link href="maxima_289.html#Introduction-to-grobner" rel="previous" title="Introduction to grobner">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-grobner"></a>
<div class="header">
<p>
Previous: <a href="maxima_289.html#Introduction-to-grobner" accesskey="p" rel="previous">Introduction to grobner</a>, Up: <a href="maxima_toc.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-grobner-1"></a>
<h3 class="section">64.2 Functions and Variables for grobner</h3>

<a name="Global-switches-for-grobner"></a>
<h4 class="subsection">64.2.1 Global switches for grobner</h4>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005fmonomial_005forder"></a><dl>
<dt><a name="index-poly_005fmonomial_005forder"></a>Option variable: <strong>poly_monomial_order</strong></dt>
<dd><p>Default value: <code>lex</code>
</p>
<p>This global switch controls which monomial order is used in polynomial and Groebner Bases calculations. If not set, <code>lex</code> will be used.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<a name="Item_003a-grobner_002fdefvr_002fpoly_005fcoefficient_005fring"></a><dl>
<dt><a name="index-poly_005fcoefficient_005fring"></a>Option variable: <strong>poly_coefficient_ring</strong></dt>
<dd><p>Default value: <code>expression_ring</code>
</p>
<p>This switch indicates the coefficient ring of the polynomials that
will be used in grobner calculations. If not set, <em>maxima&rsquo;s</em> general
expression ring will be used. This variable may be set to
<code>ring_of_integers</code> if desired.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005fprimary_005felimination_005forder"></a><dl>
<dt><a name="index-poly_005fprimary_005felimination_005forder"></a>Option variable: <strong>poly_primary_elimination_order</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Name of the default order for eliminated variables in
elimination-based functions. If not set, <code>lex</code> will be used.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005fsecondary_005felimination_005forder"></a><dl>
<dt><a name="index-poly_005fsecondary_005felimination_005forder"></a>Option variable: <strong>poly_secondary_elimination_order</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Name of the default order for kept variables in elimination-based functions. If not set, <code>lex</code> will be used.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005felimination_005forder"></a><dl>
<dt><a name="index-poly_005felimination_005forder"></a>Option variable: <strong>poly_elimination_order</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Name of the default elimination order used in elimination
calculations. If set, it overrides the settings in variables
<code>poly_primary_elimination_order</code> and <code>poly_secondary_elimination_order</code>.
The user must ensure that this is a true elimination order valid
for the number of eliminated variables. 
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005freturn_005fterm_005flist"></a><dl>
<dt><a name="index-poly_005freturn_005fterm_005flist"></a>Option variable: <strong>poly_return_term_list</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>If set to <code>true</code>, all functions in this package will return each
polynomial as a list of terms in the current monomial order rather
than a <em>maxima</em> general expression.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005fgrobner_005fdebug"></a><dl>
<dt><a name="index-poly_005fgrobner_005fdebug"></a>Option variable: <strong>poly_grobner_debug</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>If set to <code>true</code>, produce debugging and tracing output.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005fgrobner_005falgorithm"></a><dl>
<dt><a name="index-poly_005fgrobner_005falgorithm"></a>Option variable: <strong>poly_grobner_algorithm</strong></dt>
<dd><p>Default value: <code>buchberger</code>
</p>
<p>Possible values: 
</p><ul>
<li> <code>buchberger</code>
</li><li> <code>parallel_buchberger</code>
</li><li> <code>gebauer_moeller</code>
</li></ul>

<p>The name of the algorithm used to find the Groebner Bases.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Item_003a-grobner_002fdefvr_002fpoly_005ftop_005freduction_005fonly"></a><dl>
<dt><a name="index-poly_005ftop_005freduction_005fonly"></a>Option variable: <strong>poly_top_reduction_only</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>If not <code>false</code>, use top reduction only whenever possible. Top
reduction means that division algorithm stops after the first
reduction.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Simple-operators-in-grobner"></a>
<h4 class="subsection">64.2.2 Simple operators in grobner</h4>
<p><code>poly_add</code>, <code>poly_subtract</code>, <code>poly_multiply</code> and <code>poly_expt</code>
are the arithmetical operations on polynomials.
These are performed using the internal representation, but the results are converted back to the
<em>maxima</em> general form.
</p>
<a name="poly_005fadd"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fadd"></a><dl>
<dt><a name="index-poly_005fadd"></a>Function: <strong>poly_add</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Adds two polynomials <var>poly1</var> and <var>poly2</var>.
</p><div class="example">
<pre class="example">
(%i1) poly_add(z+x^2*y,x-z,[x,y,z]);
                                    2
(%o1)                              x  y + x
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fsubtract"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fsubtract"></a><dl>
<dt><a name="index-poly_005fsubtract"></a>Function: <strong>poly_subtract</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Subtracts a polynomial <var>poly2</var> from <var>poly1</var>.
</p><div class="example">
<pre class="example">
(%i1) poly_subtract(z+x^2*y,x-z,[x,y,z]);
                                      2
(%o1)                          2 z + x  y - x
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fmultiply"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fmultiply"></a><dl>
<dt><a name="index-poly_005fmultiply"></a>Function: <strong>poly_multiply</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the product of polynomials <var>poly1</var> and <var>poly2</var>.
</p><div class="example">
<pre class="example">
(%i2) poly_multiply(z+x^2*y,x-z,[x,y,z])-(z+x^2*y)*(x-z),expand;
(%o1)                                  0
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fs_005fpolynomial"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fs_005fpolynomial"></a><dl>
<dt><a name="index-poly_005fs_005fpolynomial"></a>Function: <strong>poly_s_polynomial</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the <em>syzygy polynomial</em> (<em>S-polynomial</em>) of two polynomials <var>poly1</var> and <var>poly2</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fprimitive_005fpart"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fprimitive_005fpart"></a><dl>
<dt><a name="index-poly_005fprimitive_005fpart"></a>Function: <strong>poly_primitive_part</strong> <em>(<var>poly1</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the polynomial <var>poly</var> divided by the GCD of its coefficients. 
</p>
<div class="example">
<pre class="example">(%i1) poly_primitive_part(35*y+21*x,[x,y]);
(%o1)                              5 y + 3 x
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fnormalize"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fnormalize"></a><dl>
<dt><a name="index-poly_005fnormalize"></a>Function: <strong>poly_normalize</strong> <em>(<var>poly</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the polynomial <var>poly</var> divided by the leading coefficient.
It assumes that the division is possible, which may not always be the
case in rings which are not fields.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="Other-functions-in-grobner"></a>
<h4 class="subsection">64.2.3 Other functions in grobner</h4>

<a name="poly_005fexpand"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fexpand"></a><dl>
<dt><a name="index-poly_005fexpand"></a>Function: <strong>poly_expand</strong> <em>(<var>poly</var>, <var>varlist</var>)</em></dt>
<dd><p>This function parses polynomials to internal form and back. It
is equivalent to <code>expand(<var>poly</var>)</code> if <var>poly</var> parses correctly to
a polynomial. If the representation is not compatible with a
polynomial in variables <var>varlist</var>, the result is an error.
It can be used to test whether an expression correctly parses to the
internal representation. The following examples illustrate that
indexed and transcendental function variables are allowed.
</p><div class="example">
<pre class="example">
(%i1) poly_expand((x-y)*(y+x),[x,y]);
                                     2    2
(%o1)                               x  - y
(%i2) poly_expand((y+x)^2,[x,y]);
                                2            2
(%o2)                          y  + 2 x y + x
(%i3) poly_expand((y+x)^5,[x,y]);
                  5      4         2  3       3  2      4      5
(%o3)            y  + 5 x y  + 10 x  y  + 10 x  y  + 5 x  y + x
(%i4) poly_expand(-1-x*exp(y)+x^2/sqrt(y),[x]);
                                          2
                                  y      x
(%o4)                       - x %e  + ------- - 1
                                       sqrt(y)

(%i5) poly_expand(-1-sin(x)^2+sin(x),[sin(x)]);
                                2
(%o5)                      - sin (x) + sin(x) - 1

</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fexpt"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fexpt"></a><dl>
<dt><a name="index-poly_005fexpt"></a>Function: <strong>poly_expt</strong> <em>(<var>poly</var>, <var>number</var>, <var>varlist</var>)</em></dt>
<dd><p>exponentitates <var>poly</var> by a positive integer <var>number</var>. If <var>number</var> is not a positive integer number an error will be raised.
</p><div class="example">
<pre class="example">
(%i1) poly_expt(x-y,3,[x,y])-(x-y)^3,expand;
(%o1)                                  0
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fcontent"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fcontent"></a><dl>
<dt><a name="index-poly_005fcontent"></a>Function: <strong>poly_content</strong> <em>(<var>poly</var>. <var>varlist</var>)</em></dt>
<dd><p><code>poly_content</code> extracts the GCD of its coefficients
</p><div class="example">
<pre class="example">
(%i1) poly_content(35*y+21*x,[x,y]);
(%o1)                                  7
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fpseudo_005fdivide"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fpseudo_005fdivide"></a><dl>
<dt><a name="index-poly_005fpseudo_005fdivide"></a>Function: <strong>poly_pseudo_divide</strong> <em>(<var>poly</var>, <var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p>Pseudo-divide a polynomial <var>poly</var> by the list of <em>n</em> polynomials <var>polylist</var>. Return
multiple values. The first value is a list of quotients <em>a</em>. The
second value is the remainder <em>r</em>. The third argument is a scalar
coefficient <em>c</em>, such that <em>c*poly</em> can be divided by <var>polylist</var> within the ring
of coefficients, which is not necessarily a field. Finally, the
fourth value is an integer count of the number of reductions
performed. The resulting objects satisfy the equation:
</p>
<p><em>c*poly=sum(a[i]*polylist[i],i=1...n)+r</em>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fexact_005fdivide"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fexact_005fdivide"></a><dl>
<dt><a name="index-poly_005fexact_005fdivide"></a>Function: <strong>poly_exact_divide</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Divide a polynomial <var>poly1</var> by another polynomial <var>poly2</var>. Assumes that exact
division with no remainder is possible. Returns the quotient.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fnormal_005fform"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fnormal_005fform"></a><dl>
<dt><a name="index-poly_005fnormal_005fform"></a>Function: <strong>poly_normal_form</strong> <em>(<var>poly</var>, <var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p><code>poly_normal_form</code> finds the normal form of a polynomial <var>poly</var> with respect
to a set of polynomials <var>polylist</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fbuchberger_005fcriterion"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fbuchberger_005fcriterion"></a><dl>
<dt><a name="index-poly_005fbuchberger_005fcriterion"></a>Function: <strong>poly_buchberger_criterion</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns <code>true</code> if <var>polylist</var> is a Groebner basis with respect to the current term
order, by using the Buchberger
criterion: for every two polynomials <em>h1</em> and <em>h2</em> in <var>polylist</var> the
S-polynomial <em>S(h1,h2)</em> reduces to 0 <em>modulo</em> <var>polylist</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fbuchberger"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fbuchberger"></a><dl>
<dt><a name="index-poly_005fbuchberger"></a>Function: <strong>poly_buchberger</strong> <em>(<var>polylist_fl</var> <var>varlist</var>)</em></dt>
<dd><p><code>poly_buchberger</code> performs the Buchberger algorithm on a list of
polynomials and returns the resulting Groebner basis.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<a name="Standard-postprocessing-of-Groebner-Bases"></a>
<h4 class="subsection">64.2.4 Standard postprocessing of Groebner Bases</h4>


<p>The <em>k-th elimination Ideal</em> <em>I_k</em> of an Ideal <em>I</em> over <em>K[ x[1],...,x[n] ]</em> is the ideal <em>intersect(I, K[ x[k+1],...,x[n] ])</em>.<br>
The <em>colon ideal</em> <em>I:J</em> is the ideal <em>{h|for all w in J: w*h in I}</em>.<br>
The ideal <em>I:p^inf</em> is the ideal <em>{h| there is a n in N: p^n*h in I}</em>.<br>
The ideal <em>I:J^inf</em> is the ideal <em>{h| there is a n in N and a p in J: p^n*h in I}</em>.<br>
The <em>radical ideal</em> <em>sqrt(I)</em> is the ideal 
<em>{h| there is a n in N : h^n in I }</em>.
</p>
<a name="poly_005freduction"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005freduction"></a><dl>
<dt><a name="index-poly_005freduction"></a>Function: <strong>poly_reduction</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p><code>poly_reduction</code> reduces a list of polynomials <var>polylist</var>, so that
each polynomial is fully reduced with respect to the other polynomials.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fminimization"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fminimization"></a><dl>
<dt><a name="index-poly_005fminimization"></a>Function: <strong>poly_minimization</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns a sublist of the polynomial list <var>polylist</var> spanning the same
monomial ideal as <var>polylist</var> but minimal, i.e. no leading monomial
of a polynomial in the sublist divides the leading monomial
of another polynomial.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<a name="poly_005fnormalize_005flist"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fnormalize_005flist"></a><dl>
<dt><a name="index-poly_005fnormalize_005flist"></a>Function: <strong>poly_normalize_list</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p><code>poly_normalize_list</code> applies <code>poly_normalize</code> to each polynomial in the list.
That means it divides every polynomial in a list <var>polylist</var> by its leading coefficient.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fgrobner"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fgrobner"></a><dl>
<dt><a name="index-poly_005fgrobner"></a>Function: <strong>poly_grobner</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns a Groebner basis of the ideal span by the polynomials <var>polylist</var>. Affected by the global flags.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005freduced_005fgrobner"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005freduced_005fgrobner"></a><dl>
<dt><a name="index-poly_005freduced_005fgrobner"></a>Function: <strong>poly_reduced_grobner</strong> <em>(<var>polylist</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns a reduced Groebner basis of the ideal span by the polynomials <var>polylist</var>. Affected by the global flags.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<a name="poly_005fdepends_005fp"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fdepends_005fp"></a><dl>
<dt><a name="index-poly_005fdepends_005fp"></a>Function: <strong>poly_depends_p</strong> <em>(<var>poly</var>, <var>var</var>, <var>varlist</var>)</em></dt>
<dd><p><code>poly_depends</code> tests whether a polynomial depends on a variable <var>var</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
&middot;</div>
</dd></dl>


<a name="poly_005felimination_005fideal"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005felimination_005fideal"></a><dl>
<dt><a name="index-poly_005felimination_005fideal"></a>Function: <strong>poly_elimination_ideal</strong> <em>(<var>polylist</var>, <var>number</var>, <var>varlist</var>)</em></dt>
<dd>

<p><code>poly_elimination_ideal</code> returns the grobner basis of the <em>number</em>-th elimination ideal of an
ideal specified as a list of generating polynomials (not necessarily Groebner basis).
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fcolon_005fideal"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fcolon_005fideal"></a><dl>
<dt><a name="index-poly_005fcolon_005fideal"></a>Function: <strong>poly_colon_ideal</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd>
<p>Returns the reduced Groebner basis of the colon ideal 
</p>
<p><em>I(polylist1):I(polylist2)</em>
</p>
<p>where <em>polylist1</em> and <em>polylist2</em> are two lists of polynomials.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fideal_005fintersection"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fideal_005fintersection"></a><dl>
<dt><a name="index-poly_005fideal_005fintersection"></a>Function: <strong>poly_ideal_intersection</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd>
<p><code>poly_ideal_intersection</code> returns the intersection of two ideals.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<a name="poly_005flcm"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005flcm"></a><dl>
<dt><a name="index-poly_005flcm"></a>Function: <strong>poly_lcm</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the lowest common multiple of <var>poly1</var> and <var>poly2</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fgcd"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fgcd"></a><dl>
<dt><a name="index-poly_005fgcd"></a>Function: <strong>poly_gcd</strong> <em>(<var>poly1</var>, <var>poly2</var>, <var>varlist</var>)</em></dt>
<dd>
<p>Returns the greatest common divisor of <var>poly1</var> and <var>poly2</var>.
</p>
<p>See also <code><a href="maxima_80.html#ezgcd">ezgcd</a></code>, <code><a href="maxima_80.html#gcd">gcd</a></code>, <code><a href="maxima_80.html#gcdex">gcdex</a></code>, and
<code><a href="maxima_360.html#gcdivide">gcdivide</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) p1:6*x^3+19*x^2+19*x+6; 
                        3       2
(%o1)                6 x  + 19 x  + 19 x + 6
(%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;
                  5       4       3       2
(%o2)          6 x  + 13 x  + 12 x  + 13 x  + 6 x
(%i3) poly_gcd(p1, p2, [x]);
                            2
(%o3)                    6 x  + 13 x + 6
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div></dd></dl>

<a name="poly_005fgrobner_005fequal"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fgrobner_005fequal"></a><dl>
<dt><a name="index-poly_005fgrobner_005fequal"></a>Function: <strong>poly_grobner_equal</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd><p><code>poly_grobner_equal</code> tests whether two Groebner Bases generate the same ideal.
Returns <code>true</code> if two lists of polynomials <var>polylist1</var> and <var>polylist2</var>, assumed to be Groebner Bases,
generate the same ideal, and <code>false</code> otherwise.
This is equivalent to checking that every polynomial of the first basis reduces to 0
modulo the second basis and vice versa. Note that in the example below the
first list is not a Groebner basis, and thus the result is <code>false</code>.
</p>
<div class="example">
<pre class="example">(%i1) poly_grobner_equal([y+x,x-y],[x,y],[x,y]);
(%o1)                         false
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fgrobner_005fsubsetp"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fgrobner_005fsubsetp"></a><dl>
<dt><a name="index-poly_005fgrobner_005fsubsetp"></a>Function: <strong>poly_grobner_subsetp</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd>
<p><code>poly_grobner_subsetp</code> tests whether an ideal generated by <var>polylist1</var>
is contained in the ideal generated by <var>polylist2</var>. For this test to always succeed,
<var>polylist2</var> must be a Groebner basis.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
&middot;</div>
</dd></dl>

<a name="poly_005fgrobner_005fmember"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fgrobner_005fmember"></a><dl>
<dt><a name="index-poly_005fgrobner_005fmember"></a>Function: <strong>poly_grobner_member</strong> <em>(<var>poly</var>, <var>polylist</var>, <var>varlist</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if a polynomial <var>poly</var> belongs to the ideal generated by the
polynomial list <var>polylist</var>, which is assumed to be a Groebner basis. Returns <code>false</code> otherwise.
</p>
<p><code>poly_grobner_member</code> tests whether a polynomial belongs to an ideal generated by a list of polynomials,
which is assumed to be a Groebner basis. Equivalent to <code>normal_form</code> being 0. 
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fideal_005fsaturation1"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fideal_005fsaturation1"></a><dl>
<dt><a name="index-poly_005fideal_005fsaturation1"></a>Function: <strong>poly_ideal_saturation1</strong> <em>(<var>polylist</var>, <var>poly</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the reduced Groebner basis of the saturation of the ideal
</p>
<p>I(polylist):poly^inf
</p>
<p>Geometrically, over an algebraically closed field, this is the set
of polynomials in the ideal generated by <var>polylist</var> which do not identically
vanish on the variety of <var>poly</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fideal_005fsaturation"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fideal_005fsaturation"></a><dl>
<dt><a name="index-poly_005fideal_005fsaturation"></a>Function: <strong>poly_ideal_saturation</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd><p>Returns the reduced Groebner basis of the saturation of the ideal
</p>
<p>I(polylist1):I(polylist2)^inf
</p>
<p>Geometrically, over an algebraically closed field, this is the set of polynomials in
the ideal generated by <var>polylist1</var> which do not identically vanish on the
variety of <var>polylist2</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fideal_005fpolysaturation1"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fideal_005fpolysaturation1"></a><dl>
<dt><a name="index-poly_005fideal_005fpolysaturation1"></a>Function: <strong>poly_ideal_polysaturation1</strong> <em>(<var>polylist1</var>, <var>polylist2</var>, <var>varlist</var>)</em></dt>
<dd><p><var>polylist2</var> is a list of n polynomials <code>[poly1,...,polyn]</code>.
Returns the reduced Groebner basis of the ideal
</p>
<p>I(polylist):poly1^inf:...:polyn^inf
</p>
<p>obtained by a
sequence of successive saturations in the polynomials
of the polynomial list <var>polylist2</var> of the ideal generated by the
polynomial list <var>polylist1</var>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fideal_005fpolysaturation"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fideal_005fpolysaturation"></a><dl>
<dt><a name="index-poly_005fideal_005fpolysaturation"></a>Function: <strong>poly_ideal_polysaturation</strong> <em>(<var>polylist</var>, <var>polylistlist</var>, <var>varlist</var>)</em></dt>
<dd><p><var>polylistlist</var> is a list of n list of polynomials <code>[polylist1,...,polylistn]</code>.
Returns the reduced Groebner basis of the saturation of the ideal
</p>
<p>I(polylist):I(polylist_1)^inf:...:I(polylist_n)^inf
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fsaturation_005fextension"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fsaturation_005fextension"></a><dl>
<dt><a name="index-poly_005fsaturation_005fextension"></a>Function: <strong>poly_saturation_extension</strong> <em>(<var>poly</var>, <var>polylist</var>, <var>varlist1</var>, <var>varlist2</var>)</em></dt>
<dd>
<p><code>poly_saturation_extension</code> implements the famous Rabinowitz trick.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>

<a name="poly_005fpolysaturation_005fextension"></a><a name="Item_003a-grobner_002fdeffn_002fpoly_005fpolysaturation_005fextension"></a><dl>
<dt><a name="index-poly_005fpolysaturation_005fextension"></a>Function: <strong>poly_polysaturation_extension</strong> <em>(<var>poly</var>, <var>polylist</var>, <var>varlist1</var>, <var>varlist2</var>)</em></dt>
<dd>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-grobner">Package grobner</a>
&middot;</div>
</dd></dl>


<hr>
<div class="header">
<p>
Previous: <a href="maxima_289.html#Introduction-to-grobner" accesskey="p" rel="previous">Introduction to grobner</a>, Up: <a href="maxima_toc.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>