File: maxima_352.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (267 lines) | stat: -rw-r--r-- 13,802 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for romberg</title>

<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for romberg">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for romberg">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_351.html#romberg_002dpkg" rel="up" title="romberg-pkg">
<link href="maxima_353.html#simplex_002dpkg" rel="next" title="simplex-pkg">
<link href="maxima_351.html#romberg_002dpkg" rel="previous" title="romberg-pkg">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-romberg"></a>
<div class="header">
<p>
Up: <a href="maxima_351.html#romberg_002dpkg" accesskey="u" rel="up">romberg-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-romberg-1"></a>
<h3 class="section">85.1 Functions and Variables for romberg</h3>

<a name="romberg_005ffunction"></a><a name="Item_003a-romberg_002fdeffn_002fromberg"></a><dl>
<dt><a name="index-romberg"></a>Function: <strong>romberg</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>romberg</tt> (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>romberg</tt> (<var>F</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Computes a numerical integration by Romberg&rsquo;s method.
</p>
<p><code>romberg(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code>
returns an estimate of the integral <code>integrate(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code>.
<var>expr</var> must be an expression which evaluates to a floating point value
when <var>x</var> is bound to a floating point value.
</p>
<p><code>romberg(<var>F</var>, <var>a</var>, <var>b</var>)</code>
returns an estimate of the integral <code>integrate(<var>F</var>(x), x, <var>a</var>, <var>b</var>)</code>
where <code>x</code> represents the unnamed, sole argument of <var>F</var>;
the actual argument is not named <code>x</code>.
<var>F</var> must be a Maxima or Lisp function which returns a floating point value
when the argument is a floating point value.
<var>F</var> may name a translated or compiled Maxima function.
</p>
<p>The accuracy of <code>romberg</code> is governed by the global variables
<code>rombergabs</code> and <code>rombergtol</code>.
<code>romberg</code> terminates successfully when
the absolute difference between successive approximations is less than <code>rombergabs</code>,
or the relative difference in successive approximations is less than <code>rombergtol</code>.
Thus when <code>rombergabs</code> is 0.0 (the default)
only the relative error test has any effect on <code>romberg</code>.
</p>
<p><code>romberg</code> halves the stepsize at most <code>rombergit</code> times before it gives up;
the maximum number of function evaluations is therefore <code>2^rombergit</code>.
If the error criterion established by <code>rombergabs</code> and <code>rombergtol</code>
is not satisfied, <code>romberg</code> prints an error message.
<code>romberg</code> always makes at least <code>rombergmin</code> iterations;
this is a heuristic intended to prevent spurious termination when the integrand is oscillatory.
</p>
<p><code>romberg</code> repeatedly evaluates the integrand after binding the variable
of integration to a specific value (and not before).
This evaluation policy makes it possible to nest calls to <code>romberg</code>,
to compute multidimensional integrals.
However, the error calculations do not take the errors of nested integrations
into account, so errors may be underestimated.
Also, methods devised especially for multidimensional problems may yield
the same accuracy with fewer function evaluations.
</p>
<p>See also <code><a href="maxima_105.html#Introduction-to-QUADPACK">Introduction to QUADPACK</a></code>, a collection of numerical integration functions.
</p>
<p>Examples:
</p>
<p>A 1-dimensional integration.
</p><div class="example">
<pre class="example">(%i1) f(x) := 1/((x - 1)^2 + 1/100) + 1/((x - 2)^2 + 1/1000)
              + 1/((x - 3)^2 + 1/200);
                    1                 1                1
(%o1) f(x) := -------------- + --------------- + --------------
                     2    1           2    1            2    1
              (x - 1)  + ---   (x - 2)  + ----   (x - 3)  + ---
                         100              1000              200
</pre><pre class="example">(%i2) rombergtol : 1e-6;
(%o2)                 9.999999999999999e-7
</pre><pre class="example">(%i3) rombergit : 15;
(%o3)                          15
</pre><pre class="example">(%i4) estimate : romberg (f(x), x, -5, 5);
(%o4)                   173.6730736617464
</pre><pre class="example">(%i5) exact : integrate (f(x), x, -5, 5);
        3/2          3/2      3/2          3/2
(%o5) 10    atan(7 10   ) + 10    atan(3 10   )
      3/2         9/2       3/2         5/2
 + 5 2    atan(5 2   ) + 5 2    atan(5 2   ) + 10 atan(60)
 + 10 atan(40)
</pre><pre class="example">(%i6) abs (estimate - exact) / exact, numer;
(%o6)                 7.552722451569877e-11
</pre></div>

<p>A 2-dimensional integration, implemented by nested calls to <code>romberg</code>.
</p><div class="example">
<pre class="example">(%i1) g(x, y) := x*y / (x + y);
                                    x y
(%o1)                   g(x, y) := -----
                                   x + y
</pre><pre class="example">(%i2) rombergtol : 1e-6;
(%o2)                 9.999999999999999e-7
</pre><pre class="example">(%i3) estimate : romberg (romberg (g(x, y), y, 0, x/2), x, 1, 3);
(%o3)                  0.8193023962835647
</pre><pre class="example">(%i4) assume (x &gt; 0);
(%o4)                        [x &gt; 0]
</pre><pre class="example">(%i5) integrate (integrate (g(x, y), y, 0, x/2), x, 1, 3);
                                           3
                                     2 log(-) - 1
                    9                      2        9
(%o5)      (- 9 log(-)) + 9 log(3) + ------------ + -
                    2                     6         2
</pre><pre class="example">(%i6) exact : radcan (%);
                    26 log(3) - 26 log(2) - 13
(%o6)             - --------------------------
                                3
</pre><pre class="example">(%i7) abs (estimate - exact) / exact, numer;
(%o7)                 1.371197987185102e-10
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-romberg">Package romberg</a>
&middot;<a href="maxima_424.html#Category_003a-Numerical-methods">Numerical methods</a>
&middot;</div>
</dd></dl>

<a name="rombergabs"></a><a name="Item_003a-romberg_002fdefvr_002frombergabs"></a><dl>
<dt><a name="index-rombergabs"></a>Option variable: <strong>rombergabs</strong></dt>
<dd><p>Default value: 0.0
</p>
<p>The accuracy of <code>romberg</code> is governed by the global variables
<code>rombergabs</code> and <code>rombergtol</code>.
<code>romberg</code> terminates successfully when
the absolute difference between successive approximations is less than <code>rombergabs</code>,
or the relative difference in successive approximations is less than <code>rombergtol</code>.
Thus when <code>rombergabs</code> is 0.0 (the default)
only the relative error test has any effect on <code>romberg</code>.
</p>
<p>See also <code><a href="#rombergit">rombergit</a></code> and <code><a href="#rombergmin">rombergmin</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-romberg">Package romberg</a>
&middot;</div>
</dd></dl>

<a name="rombergit"></a><a name="Item_003a-romberg_002fdefvr_002frombergit"></a><dl>
<dt><a name="index-rombergit"></a>Option variable: <strong>rombergit</strong></dt>
<dd><p>Default value: 11
</p>
<p><code>romberg</code> halves the stepsize at most <code>rombergit</code> times before it gives up;
the maximum number of function evaluations is therefore <code>2^rombergit</code>.
<code>romberg</code> always makes at least <code>rombergmin</code> iterations;
this is a heuristic intended to prevent spurious termination when the integrand is oscillatory.
</p>
<p>See also <code><a href="#rombergabs">rombergabs</a></code> and <code><a href="#rombergtol">rombergtol</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-romberg">Package romberg</a>
&middot;</div>
</dd></dl>

<a name="rombergmin"></a><a name="Item_003a-romberg_002fdefvr_002frombergmin"></a><dl>
<dt><a name="index-rombergmin"></a>Option variable: <strong>rombergmin</strong></dt>
<dd><p>Default value: 0
</p>
<p><code>romberg</code> always makes at least <code>rombergmin</code> iterations;
this is a heuristic intended to prevent spurious termination when the integrand is oscillatory.
</p>
<p>See also <code><a href="#rombergit">rombergit</a></code>, <code><a href="#rombergabs">rombergabs</a></code>, and <code><a href="#rombergtol">rombergtol</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-romberg">Package romberg</a>
&middot;</div>
</dd></dl>

<a name="rombergtol"></a><a name="Item_003a-romberg_002fdefvr_002frombergtol"></a><dl>
<dt><a name="index-rombergtol"></a>Option variable: <strong>rombergtol</strong></dt>
<dd><p>Default value: 1e-4
</p>
<p>The accuracy of <code>romberg</code> is governed by the global variables
<code>rombergabs</code> and <code>rombergtol</code>.
<code>romberg</code> terminates successfully when
the absolute difference between successive approximations is less than <code>rombergabs</code>,
or the relative difference in successive approximations is less than <code>rombergtol</code>.
Thus when <code>rombergabs</code> is 0.0 (the default)
only the relative error test has any effect on <code>romberg</code>.
</p>
<p>See also <code><a href="#rombergit">rombergit</a></code> and <code><a href="#rombergmin">rombergmin</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Package-romberg">Package romberg</a>
&middot;</div>
</dd></dl>


<hr>
<div class="header">
<p>
Up: <a href="maxima_351.html#romberg_002dpkg" accesskey="u" rel="up">romberg-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>