1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for Simplification</title>
<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for Simplification">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for Simplification">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_44.html#Simplification" rel="up" title="Simplification">
<link href="maxima_47.html#Elementary-Functions" rel="next" title="Elementary Functions">
<link href="maxima_45.html#Introduction-to-Simplification" rel="previous" title="Introduction to Simplification">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Simplification"></a>
<div class="header">
<p>
Previous: <a href="maxima_45.html#Introduction-to-Simplification" accesskey="p" rel="previous">Introduction to Simplification</a>, Up: <a href="maxima_44.html#Simplification" accesskey="u" rel="up">Simplification</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Simplification-1"></a>
<h3 class="section">9.2 Functions and Variables for Simplification</h3>
<a name="additive"></a><a name="Item_003a-Simplification_002fdefvr_002fadditive"></a><dl>
<dt><a name="index-additive"></a>Property: <strong>additive</strong></dt>
<dd>
<p>If <code>declare(f,additive)</code> has been executed, then:
</p>
<p>(1) If <code>f</code> is univariate, whenever the simplifier encounters <code>f</code>
applied to a sum, <code>f</code> will be distributed over that sum. I.e.
<code>f(y+x)</code> will simplify to <code>f(y)+f(x)</code>.
</p>
<p>(2) If <code>f</code> is a function of 2 or more arguments, additivity is defined as
additivity in the first argument to <code>f</code>, as in the case of <code>sum</code> or
<code>integrate</code>, i.e. <code>f(h(x)+g(x),x)</code> will simplify to
<code>f(h(x),x)+f(g(x),x)</code>. This simplification does not occur when <code>f</code> is
applied to expressions of the form <code>sum(x[i],i,lower-limit,upper-limit)</code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) F3 (a + b + c);
(%o1) F3(c + b + a)
</pre><pre class="example">(%i2) declare (F3, additive);
(%o2) done
</pre><pre class="example">(%i3) F3 (a + b + c);
(%o3) F3(c) + F3(b) + F3(a)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·</div></dd></dl>
<a name="antisymmetric"></a><a name="Item_003a-Simplification_002fdefvr_002fantisymmetric"></a><dl>
<dt><a name="index-antisymmetric"></a>Property: <strong>antisymmetric</strong></dt>
<dd>
<p>If <code>declare(h,antisymmetric)</code> is done, this tells the simplifier that
<code>h</code> is antisymmetric. E.g. <code>h(x,z,y)</code> will simplify to
<code>- h(x, y, z)</code>. That is, it will give (-1)^n times the result given by
<code><a href="#symmetric">symmetric</a></code> or <code><a href="#commutative">commutative</a></code>, where n is the number of interchanges
of two arguments necessary to convert it to that form.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) S (b, a);
(%o1) S(b, a)
</pre><pre class="example">(%i2) declare (S, symmetric);
(%o2) done
</pre><pre class="example">(%i3) S (b, a);
(%o3) S(a, b)
</pre><pre class="example">(%i4) S (a, c, e, d, b);
(%o4) S(a, b, c, d, e)
</pre><pre class="example">(%i5) T (b, a);
(%o5) T(b, a)
</pre><pre class="example">(%i6) declare (T, antisymmetric);
(%o6) done
</pre><pre class="example">(%i7) T (b, a);
(%o7) - T(a, b)
</pre><pre class="example">(%i8) T (a, c, e, d, b);
(%o8) T(a, b, c, d, e)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·</div></dd></dl>
<a name="combine"></a><a name="Item_003a-Simplification_002fdeffn_002fcombine"></a><dl>
<dt><a name="index-combine"></a>Function: <strong>combine</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Simplifies the sum <var>expr</var> by combining terms with the same
denominator into a single term.
</p>
<p>See also: <code><a href="maxima_159.html#rncombine">rncombine</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) 1*f/2*b + 2*c/3*a + 3*f/4*b +c/5*b*a;
5 b f a b c 2 a c
(%o1) ----- + ----- + -----
4 5 3
</pre><pre class="example">(%i2) combine (%);
75 b f + 4 (3 a b c + 10 a c)
(%o2) -----------------------------
60
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="commutative"></a><a name="Item_003a-Simplification_002fdefvr_002fcommutative"></a><dl>
<dt><a name="index-commutative"></a>Property: <strong>commutative</strong></dt>
<dd>
<p>If <code>declare(h, commutative)</code> is done, this tells the simplifier that
<code>h</code> is a commutative function. E.g. <code>h(x, z, y)</code> will simplify to
<code>h(x, y, z)</code>. This is the same as <code><a href="#symmetric">symmetric</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) S (b, a);
(%o1) S(b, a)
</pre><pre class="example">(%i2) S (a, b) + S (b, a);
(%o2) S(b, a) + S(a, b)
</pre><pre class="example">(%i3) declare (S, commutative);
(%o3) done
</pre><pre class="example">(%i4) S (b, a);
(%o4) S(a, b)
</pre><pre class="example">(%i5) S (a, b) + S (b, a);
(%o5) 2 S(a, b)
</pre><pre class="example">(%i6) S (a, c, e, d, b);
(%o6) S(a, b, c, d, e)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·</div></dd></dl>
<a name="demoivre"></a><a name="Item_003a-Simplification_002fdeffn_002fdemoivre"></a><dl>
<dt><a name="index-demoivre"></a>Function: <strong>demoivre</strong> <em>(<var>expr</var>)</em></dt>
<dt><a name="index-demoivre-1"></a>Option variable: <strong>demoivre</strong></dt>
<dd>
<p>The function <code>demoivre (expr)</code> converts one expression
without setting the global variable <code>demoivre</code>.
</p>
<p>When the variable <code>demoivre</code> is <code>true</code>, complex exponentials are
converted into equivalent expressions in terms of circular functions:
<code>exp (a + b*%i)</code> simplifies to <code>%e^a * (cos(b) + %i*sin(b))</code>
if <code>b</code> is free of <code>%i</code>. <code>a</code> and <code>b</code> are not expanded.
</p>
<p>The default value of <code>demoivre</code> is <code>false</code>.
</p>
<p><code>exponentialize</code> converts circular and hyperbolic functions to exponential
form. <code>demoivre</code> and <code>exponentialize</code> cannot both be true at the same
time.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Hyperbolic-functions">Hyperbolic functions</a>
·</div></dd></dl>
<a name="function_005fdistrib"></a><a name="Item_003a-Simplification_002fdeffn_002fdistrib"></a><dl>
<dt><a name="index-distrib"></a>Function: <strong>distrib</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Distributes sums over products. It differs from <code>expand</code> in that it works
at only the top level of an expression, i.e., it doesn’t recurse and it is
faster than <code>expand</code>. It differs from <code>multthru</code> in that it expands
all sums at that level.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) distrib ((a+b) * (c+d));
(%o1) b d + a d + b c + a c
(%i2) multthru ((a+b) * (c+d));
(%o2) (b + a) d + (b + a) c
(%i3) distrib (1/((a+b) * (c+d)));
1
(%o3) ---------------
(b + a) (d + c)
(%i4) expand (1/((a+b) * (c+d)), 1, 0);
1
(%o4) ---------------------
b d + a d + b c + a c
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="distribute_005fover"></a><a name="Item_003a-Simplification_002fdefvr_002fdistribute_005fover"></a><dl>
<dt><a name="index-distribute_005fover"></a>Option variable: <strong>distribute_over</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>distribute_over</code> controls the mapping of functions over bags like lists,
matrices, and equations. At this time not all Maxima functions have this
property. It is possible to look up this property with the command
<code><a href="maxima_62.html#properties">properties</a></code>..
</p>
<p>The mapping of functions is switched off, when setting <code>distribute_over</code>
to the value <code>false</code>.
</p>
<p>Examples:
</p>
<p>The <code>sin</code> function maps over a list:
</p>
<div class="example">
<pre class="example">(%i1) sin([x,1,1.0]);
(%o1) [sin(x), sin(1), 0.8414709848078965]
</pre></div>
<p><code>mod</code> is a function with two arguments which maps over lists. Mapping over
nested lists is possible too:
</p>
<div class="example">
<pre class="example">(%i1) mod([x,11,2*a],10);
(%o1) [mod(x, 10), 1, 2 mod(a, 5)]
</pre><pre class="example">(%i2) mod([[x,y,z],11,2*a],10);
(%o2) [[mod(x, 10), mod(y, 10), mod(z, 10)], 1, 2 mod(a, 5)]
</pre></div>
<p>Mapping of the <code>floor</code> function over a matrix and an equation:
</p>
<div class="example">
<pre class="example">(%i1) floor(matrix([a,b],[c,d]));
[ floor(a) floor(b) ]
(%o1) [ ]
[ floor(c) floor(d) ]
</pre><pre class="example">(%i2) floor(a=b);
(%o2) floor(a) = floor(b)
</pre></div>
<p>Functions with more than one argument map over any of the arguments or all
arguments:
</p>
<div class="example">
<pre class="example">(%i1) expintegral_e([1,2],[x,y]);
(%o1) [[expintegral_e(1, x), expintegral_e(1, y)],
[expintegral_e(2, x), expintegral_e(2, y)]]
</pre></div>
<p>Check if a function has the property distribute_over:
</p>
<div class="example">
<pre class="example">(%i1) properties(abs);
(%o1) [integral, rule, distributes over bags, noun, gradef,
system function]
</pre></div>
<p>The mapping of functions is switched off, when setting <code>distribute_over</code>
to the value <code>false</code>.
</p>
<div class="example">
<pre class="example">(%i1) distribute_over;
(%o1) true
</pre><pre class="example">(%i2) sin([x,1,1.0]);
(%o2) [sin(x), sin(1), 0.8414709848078965]
</pre><pre class="example">(%i3) distribute_over : not distribute_over;
(%o3) false
</pre><pre class="example">(%i4) sin([x,1,1.0]);
(%o4) sin([x, 1, 1.0])
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="domain"></a><a name="Item_003a-Simplification_002fdefvr_002fdomain"></a><dl>
<dt><a name="index-domain"></a>Option variable: <strong>domain</strong></dt>
<dd><p>Default value: <code>real</code>
</p>
<p>When <code>domain</code> is set to <code>complex</code>, <code>sqrt (x^2)</code> will remain
<code>sqrt (x^2)</code> instead of returning <code>abs(x)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="evenfun"></a><a name="oddfun"></a><a name="Item_003a-Simplification_002fdefvr_002fevenfun"></a><dl>
<dt><a name="index-evenfun"></a>Property: <strong>evenfun</strong></dt>
<dd><a name="Item_003a-Simplification_002fdefvr_002foddfun"></a></dd><dt><a name="index-oddfun"></a>Property: <strong>oddfun</strong></dt>
<dd>
<p><code>declare(f, evenfun)</code> or <code>declare(f, oddfun)</code> tells Maxima to recognize
the function <code>f</code> as an even or odd function.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) o (- x) + o (x);
(%o1) o(x) + o(- x)
(%i2) declare (o, oddfun);
(%o2) done
(%i3) o (- x) + o (x);
(%o3) 0
(%i4) e (- x) - e (x);
(%o4) e(- x) - e(x)
(%i5) declare (e, evenfun);
(%o5) done
(%i6) e (- x) - e (x);
(%o6) 0
</pre></div>
</dd></dl>
<a name="expand"></a><a name="Item_003a-Simplification_002fdeffn_002fexpand"></a><dl>
<dt><a name="index-expand"></a>Function: <strong>expand</strong> <em><br> <tt>expand</tt> (<var>expr</var>) <br> <tt>expand</tt> (<var>expr</var>, <var>p</var>, <var>n</var>)</em></dt>
<dd>
<p>Expand expression <var>expr</var>.
Products of sums and exponentiated sums are
multiplied out, numerators of rational expressions which are sums are
split into their respective terms, and multiplication (commutative
and non-commutative) are distributed over addition at all levels of
<var>expr</var>.
</p>
<p>For polynomials one should usually use <code>ratexpand</code> which uses a
more efficient algorithm.
</p>
<p><code>maxnegex</code> and <code>maxposex</code> control the maximum negative and
positive exponents, respectively, which will expand.
</p>
<p><code>expand (<var>expr</var>, <var>p</var>, <var>n</var>)</code> expands <var>expr</var>,
using <var>p</var> for <code>maxposex</code> and <var>n</var> for <code>maxnegex</code>.
This is useful in order to expand part but not all of an expression.
</p>
<p><code>expon</code> - the exponent of the largest negative power which is
automatically expanded (independent of calls to <code>expand</code>). For example
if <code>expon</code> is 4 then <code>(x+1)^(-5)</code> will not be automatically expanded.
</p>
<p><code>expop</code> - the highest positive exponent which is automatically expanded.
Thus <code>(x+1)^3</code>, when typed, will be automatically expanded only if
<code>expop</code> is greater than or equal to 3. If it is desired to have
<code>(x+1)^n</code> expanded where <code>n</code> is greater than <code>expop</code> then
executing <code>expand ((x+1)^n)</code> will work only if <code>maxposex</code> is not
less than <code>n</code>.
</p>
<p><code>expand(expr, 0, 0)</code> causes a resimplification of <code>expr</code>. <code>expr</code>
is not reevaluated. In distinction from <code>ev(expr, noeval)</code> a special
representation (e. g. a CRE form) is removed. See also <code><a href="maxima_43.html#ev">ev</a></code>.
</p>
<p>The <code>expand</code> flag used with <code>ev</code> causes expansion.
</p>
<p>The file <samp>share/simplification/facexp.mac</samp>
contains several related functions (in particular <code>facsum</code>,
<code>factorfacsum</code> and <code>collectterms</code>, which are autoloaded) and variables
(<code>nextlayerfactor</code> and <code>facsum_combine</code>) that provide the user with
the ability to structure expressions by controlled expansion.
Brief function descriptions are available in <samp>simplification/facexp.usg</samp>.
A demo is available by doing <code>demo("facexp")</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) expr:(x+1)^2*(y+1)^3;
2 3
(%o1) (x + 1) (y + 1)
</pre><pre class="example">(%i2) expand(expr);
2 3 3 3 2 2 2 2 2
(%o2) x y + 2 x y + y + 3 x y + 6 x y + 3 y + 3 x y
2
+ 6 x y + 3 y + x + 2 x + 1
</pre><pre class="example">(%i3) expand(expr,2);
2 3 3 3
(%o3) x (y + 1) + 2 x (y + 1) + (y + 1)
</pre><pre class="example">(%i4) expr:(x+1)^-2*(y+1)^3;
3
(y + 1)
(%o4) --------
2
(x + 1)
</pre><pre class="example">(%i5) expand(expr);
3 2
y 3 y 3 y 1
(%o5) ------------ + ------------ + ------------ + ------------
2 2 2 2
x + 2 x + 1 x + 2 x + 1 x + 2 x + 1 x + 2 x + 1
</pre><pre class="example">(%i6) expand(expr,2,2);
3
(y + 1)
(%o6) ------------
2
x + 2 x + 1
</pre></div>
<p>Resimplify an expression without expansion:
</p>
<div class="example">
<pre class="example">(%i1) expr:(1+x)^2*sin(x);
2
(%o1) (x + 1) sin(x)
</pre><pre class="example">(%i2) exponentialize:true;
(%o2) true
</pre><pre class="example">(%i3) expand(expr,0,0);
2 %i x - %i x
%i (x + 1) (%e - %e )
(%o3) - -------------------------------
2
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="expandwrt"></a><a name="Item_003a-Simplification_002fdeffn_002fexpandwrt"></a><dl>
<dt><a name="index-expandwrt"></a>Function: <strong>expandwrt</strong> <em>(<var>expr</var>, <var>x_1</var>, …, <var>x_n</var>)</em></dt>
<dd>
<p>Expands expression <code>expr</code> with respect to the
variables <var>x_1</var>, …, <var>x_n</var>.
All products involving the variables appear explicitly. The form returned
will be free of products of sums of expressions that are not free of
the variables. <var>x_1</var>, …, <var>x_n</var>
may be variables, operators, or expressions.
</p>
<p>By default, denominators are not expanded, but this can be controlled by
means of the switch <code>expandwrt_denom</code>.
</p>
<p>This function is autoloaded from
<samp>simplification/stopex.mac</samp>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="expandwert_005fdenom"></a><a name="Item_003a-Simplification_002fdefvr_002fexpandwrt_005fdenom"></a><dl>
<dt><a name="index-expandwrt_005fdenom"></a>Option variable: <strong>expandwrt_denom</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p><code>expandwrt_denom</code> controls the treatment of rational
expressions by <code>expandwrt</code>. If <code>true</code>, then both the numerator and
denominator of the expression will be expanded according to the
arguments of <code>expandwrt</code>, but if <code>expandwrt_denom</code> is <code>false</code>,
then only the numerator will be expanded in that way.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="expandwrt_005ffactored"></a><a name="Item_003a-Simplification_002fdeffn_002fexpandwrt_005ffactored"></a><dl>
<dt><a name="index-expandwrt_005ffactored"></a>Function: <strong>expandwrt_factored</strong> <em>(<var>expr</var>, <var>x_1</var>, …, <var>x_n</var>)</em></dt>
<dd>
<p>is similar to <code>expandwrt</code>, but treats expressions that are products
somewhat differently. <code>expandwrt_factored</code> expands only on those factors
of <code>expr</code> that contain the variables <var>x_1</var>, …, <var>x_n</var>.
</p>
<p>This function is autoloaded from <samp>simplification/stopex.mac</samp>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="expon"></a><a name="Item_003a-Simplification_002fdefvr_002fexpon"></a><dl>
<dt><a name="index-expon"></a>Option variable: <strong>expon</strong></dt>
<dd><p>Default value: 0
</p>
<p><code>expon</code> is the exponent of the largest negative power which
is automatically expanded (independent of calls to <code>expand</code>). For
example, if <code>expon</code> is 4 then <code>(x+1)^(-5)</code> will not be automatically
expanded.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="exponentialize"></a><a name="Item_003a-Simplification_002fdeffn_002fexponentialize"></a><dl>
<dt><a name="index-exponentialize"></a>Function: <strong>exponentialize</strong> <em>(<var>expr</var>)</em></dt>
<dt><a name="index-exponentialize-1"></a>Option variable: <strong>exponentialize</strong></dt>
<dd>
<p>The function <code>exponentialize (expr)</code> converts
circular and hyperbolic functions in <var>expr</var> to exponentials,
without setting the global variable <code>exponentialize</code>.
</p>
<p>When the variable <code>exponentialize</code> is <code>true</code>,
all circular and hyperbolic functions are converted to exponential form.
The default value is <code>false</code>.
</p>
<p><code>demoivre</code> converts complex exponentials into circular functions.
<code>exponentialize</code> and <code>demoivre</code> cannot
both be true at the same time.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Hyperbolic-functions">Hyperbolic functions</a>
·</div></dd></dl>
<a name="expop"></a><a name="Item_003a-Simplification_002fdefvr_002fexpop"></a><dl>
<dt><a name="index-expop"></a>Option variable: <strong>expop</strong></dt>
<dd><p>Default value: 0
</p>
<p><code>expop</code> is the highest positive exponent which is automatically expanded.
Thus <code>(x + 1)^3</code>, when typed, will be automatically expanded only if
<code>expop</code> is greater than or equal to 3. If it is desired to have
<code>(x + 1)^n</code> expanded where <code>n</code> is greater than <code>expop</code> then
executing <code>expand ((x + 1)^n)</code> will work only if <code>maxposex</code> is not
less than n.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="lassociative"></a><a name="Item_003a-Simplification_002fdefvr_002flassociative"></a><dl>
<dt><a name="index-lassociative"></a>Property: <strong>lassociative</strong></dt>
<dd>
<p><code>declare (g, lassociative)</code> tells the Maxima simplifier that <code>g</code> is
left-associative. E.g., <code>g (g (a, b), g (c, d))</code> will simplify to
<code>g (g (g (a, b), c), d)</code>.
</p>
<p>See also <code><a href="#rassociative">rassociative</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Simplification">Simplification</a>
·</div></dd></dl>
<a name="linear"></a><a name="Item_003a-Simplification_002fdefvr_002flinear"></a><dl>
<dt><a name="index-linear-1"></a>Property: <strong>linear</strong></dt>
<dd>
<p>One of Maxima’s operator properties. For univariate <code>f</code> so
declared, "expansion" <code>f(x + y)</code> yields <code>f(x) + f(y)</code>,
<code>f(a*x)</code> yields <code>a*f(x)</code> takes
place where <code>a</code> is a "constant". For functions of two or more arguments,
"linearity" is defined to be as in the case of <code><a href="maxima_139.html#sum">sum</a></code> or <code><a href="maxima_104.html#integrate">integrate</a></code>,
i.e., <code>f (a*x + b, x)</code> yields <code>a*f(x,x) + b*f(1,x)</code>
for <code>a</code> and <code>b</code> free of <code>x</code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) declare (f, linear);
(%o1) done
</pre><pre class="example">(%i2) f(x+y);
(%o2) f(y) + f(x)
</pre><pre class="example">(%i3) declare (a, constant);
(%o3) done
</pre><pre class="example">(%i4) f(a*x);
(%o4) a f(x)
</pre></div>
<p><code>linear</code> is equivalent to <code><a href="#additive">additive</a></code> and <code><a href="#outative">outative</a></code>.
See also <code><a href="#opproperties">opproperties</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) 'sum (F(k) + G(k), k, 1, inf);
inf
====
\
(%o1) > (G(k) + F(k))
/
====
k = 1
</pre><pre class="example">(%i2) declare (nounify (sum), linear);
(%o2) done
</pre><pre class="example">(%i3) 'sum (F(k) + G(k), k, 1, inf);
inf inf
==== ====
\ \
(%o3) > G(k) + > F(k)
/ /
==== ====
k = 1 k = 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Simplification">Simplification</a>
·</div></dd></dl>
<a name="maxnegex"></a><a name="Item_003a-Simplification_002fdefvr_002fmaxnegex"></a><dl>
<dt><a name="index-maxnegex"></a>Option variable: <strong>maxnegex</strong></dt>
<dd><p>Default value: 1000
</p>
<p><code>maxnegex</code> is the largest negative exponent which will
be expanded by the <code>expand</code> command, see also <code><a href="#maxposex">maxposex</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="maxposex"></a><a name="Item_003a-Simplification_002fdefvr_002fmaxposex"></a><dl>
<dt><a name="index-maxposex"></a>Option variable: <strong>maxposex</strong></dt>
<dd><p>Default value: 1000
</p>
<p><code>maxposex</code> is the largest exponent which will be
expanded with the <code>expand</code> command, see also <code><a href="#maxnegex">maxnegex</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="multiplicative"></a><a name="Item_003a-Simplification_002fdefvr_002fmultiplicative"></a><dl>
<dt><a name="index-multiplicative"></a>Property: <strong>multiplicative</strong></dt>
<dd>
<p><code>declare(f, multiplicative)</code> tells the Maxima simplifier that <code>f</code>
is multiplicative.
</p>
<ol>
<li> If <code>f</code> is univariate, whenever the simplifier encounters <code>f</code> applied
to a product, <code>f</code> distributes over that product. E.g., <code>f(x*y)</code>
simplifies to <code>f(x)*f(y)</code>.
This simplification is not applied to expressions of the form <code>f('product(...))</code>.
</li><li> If <code>f</code> is a function of 2 or more arguments, multiplicativity is
defined as multiplicativity in the first argument to <code>f</code>, e.g.,
<code>f (g(x) * h(x), x)</code> simplifies to <code>f (g(x) ,x) * f (h(x), x)</code>.
</li></ol>
<p><code>declare(nounify(product), multiplicative)</code> tells Maxima to simplify symbolic products.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) F2 (a * b * c);
(%o1) F2(a b c)
</pre><pre class="example">(%i2) declare (F2, multiplicative);
(%o2) done
</pre><pre class="example">(%i3) F2 (a * b * c);
(%o3) F2(a) F2(b) F2(c)
</pre></div>
<p><code>declare(nounify(product), multiplicative)</code> tells Maxima to simplify symbolic products.
</p>
<div class="example">
<pre class="example">(%i1) product (a[i] * b[i], i, 1, n);
n
/===\
! !
(%o1) ! ! a b
! ! i i
i = 1
</pre><pre class="example">(%i2) declare (nounify (product), multiplicative);
(%o2) done
</pre><pre class="example">(%i3) product (a[i] * b[i], i, 1, n);
n n
/===\ /===\
! ! ! !
(%o3) ( ! ! a ) ! ! b
! ! i ! ! i
i = 1 i = 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·<a href="maxima_424.html#Category_003a-Simplification">Simplification</a>
·</div></dd></dl>
<a name="multthru"></a><a name="Item_003a-Simplification_002fdeffn_002fmultthru"></a><dl>
<dt><a name="index-multthru"></a>Function: <strong>multthru</strong> <em><br> <tt>multthru</tt> (<var>expr</var>) <br> <tt>multthru</tt> (<var>expr_1</var>, <var>expr_2</var>)</em></dt>
<dd>
<p>Multiplies a factor (which should be a sum) of <var>expr</var> by the other factors
of <var>expr</var>. That is, <var>expr</var> is <code><var>f_1</var> <var>f_2</var> ... <var>f_n</var></code>
where at least one factor, say <var>f_i</var>, is a sum of terms. Each term in that
sum is multiplied by the other factors in the product. (Namely all the factors
except <var>f_i</var>). <code>multthru</code> does not expand exponentiated sums.
This function is the fastest way to distribute products (commutative or
noncommutative) over sums. Since quotients are represented as products
<code>multthru</code> can be used to divide sums by products as well.
</p>
<p><code>multthru (<var>expr_1</var>, <var>expr_2</var>)</code> multiplies each term in
<var>expr_2</var> (which should be a sum or an equation) by <var>expr_1</var>. If
<var>expr_1</var> is not itself a sum then this form is equivalent to
<code>multthru (<var>expr_1</var>*<var>expr_2</var>)</code>.
</p>
<div class="example">
<pre class="example">(%i1) x/(x-y)^2 - 1/(x-y) - f(x)/(x-y)^3;
1 x f(x)
(%o1) - ----- + -------- - --------
x - y 2 3
(x - y) (x - y)
(%i2) multthru ((x-y)^3, %);
2
(%o2) - (x - y) + x (x - y) - f(x)
(%i3) ratexpand (%);
2
(%o3) - y + x y - f(x)
(%i4) ((a+b)^10*s^2 + 2*a*b*s + (a*b)^2)/(a*b*s^2);
10 2 2 2
(b + a) s + 2 a b s + a b
(%o4) ------------------------------
2
a b s
(%i5) multthru (%); /* note that this does not expand (b+a)^10 */
10
2 a b (b + a)
(%o5) - + --- + ---------
s 2 a b
s
(%i6) multthru (a.(b+c.(d+e)+f));
(%o6) a . f + a . c . (e + d) + a . b
(%i7) expand (a.(b+c.(d+e)+f));
(%o7) a . f + a . c . e + a . c . d + a . b
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<a name="property_005fnary"></a><a name="Item_003a-Simplification_002fdefvr_002fnary"></a><dl>
<dt><a name="index-nary-1"></a>Property: <strong>nary</strong></dt>
<dd>
<p><code>declare(f, nary)</code> tells Maxima to recognize the function <code>f</code> as an
n-ary function.
</p>
<p>The <code>nary</code> declaration is not the same as calling the
<code><a href="maxima_41.html#function_005fnary">nary</a></code> function. The sole effect of
<code>declare(f, nary)</code> is to instruct the Maxima simplifier to flatten nested
expressions, for example, to simplify <code>foo(x, foo(y, z))</code> to
<code>foo(x, y, z)</code>. See also <code><a href="maxima_62.html#declare">declare</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) H (H (a, b), H (c, H (d, e)));
(%o1) H(H(a, b), H(c, H(d, e)))
(%i2) declare (H, nary);
(%o2) done
(%i3) H (H (a, b), H (c, H (d, e)));
(%o3) H(a, b, c, d, e)
</pre></div>
</dd></dl>
<a name="negdistrib"></a><a name="Item_003a-Simplification_002fdefvr_002fnegdistrib"></a><dl>
<dt><a name="index-negdistrib"></a>Option variable: <strong>negdistrib</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>negdistrib</code> is <code>true</code>, -1 distributes over an expression.
E.g., <code>-(x + y)</code> becomes <code>- y - x</code>. Setting it to <code>false</code>
will allow <code>- (x + y)</code> to be displayed like that. This is sometimes useful
but be very careful: like the <code>simp</code> flag, this is one flag you do not
want to set to <code>false</code> as a matter of course or necessarily for other
than local use in your Maxima.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) negdistrib;
(%o1) true
</pre><pre class="example">(%i2) -(x+y);
(%o2) (- y) - x
</pre><pre class="example">(%i3) negdistrib : not negdistrib ;
(%o3) false
</pre><pre class="example">(%i4) -(x+y);
(%o4) - (y + x)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="opproperties"></a><a name="Item_003a-Simplification_002fdefvr_002fopproperties"></a><dl>
<dt><a name="index-opproperties"></a>System variable: <strong>opproperties</strong></dt>
<dd>
<p><code>opproperties</code> is the list of the special operator properties recognized
by the Maxima simplifier.
</p>
<p>Items are added to the <code>opproperties</code> list by the function <code><a href="#define_005fopproperty">define_opproperty</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) opproperties;
(%o1) [linear, additive, multiplicative, outative, evenfun,
oddfun, commutative, symmetric, antisymmetric, nary,
lassociative, rassociative]
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Global-variables">Global variables</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Simplification">Simplification</a>
·</div></dd></dl>
<a name="define_005fopproperty"></a><a name="Item_003a-Simplification_002fdeffn_002fdefine_005fopproperty"></a><dl>
<dt><a name="index-define_005fopproperty"></a>Function: <strong>define_opproperty</strong> <em>(<var>property_name</var>, <var>simplifier_fn</var>)</em></dt>
<dd>
<p>Declares the symbol <var>property_name</var> to be an operator property,
which is simplified by <var>simplifier_fn</var>,
which may be the name of a Maxima or Lisp function or a lambda expression.
After <code>define_opproperty</code> is called,
functions and operators may be declared to have the <var>property_name</var> property,
and <var>simplifier_fn</var> is called to simplify them.
</p>
<p><var>simplifier_fn</var> must be a function of one argument,
which is an expression in which the main operator is declared to have the <var>property_name</var> property.
</p>
<p><var>simplifier_fn</var> is called with the global flag <code>simp</code> disabled.
Therefore <var>simplifier_fn</var> must be able to carry out its simplification
without making use of the general simplifier.
</p>
<p><code>define_opproperty</code> appends <var>property_name</var> to the
global list <code><a href="#opproperties">opproperties</a></code>.
</p>
<p><code>define_opproperty</code> returns <code>done</code>.
</p>
<p>Example:
</p>
<p>Declare a new property, <code>identity</code>, which is simplified by <code>simplify_identity</code>.
Declare that <code>f</code> and <code>g</code> have the new property.
</p>
<div class="example">
<pre class="example">(%i1) define_opproperty (identity, simplify_identity);
(%o1) done
</pre><pre class="example">(%i2) simplify_identity(e) := first(e);
(%o2) simplify_identity(e) := first(e)
</pre><pre class="example">(%i3) declare ([f, g], identity);
(%o3) done
</pre><pre class="example">(%i4) f(10 + t);
(%o4) t + 10
</pre><pre class="example">(%i5) g(3*u) - f(2*u);
(%o5) u
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·<a href="maxima_424.html#Category_003a-Simplification">Simplification</a>
·</div></dd></dl>
<a name="outative"></a><a name="Item_003a-Simplification_002fdefvr_002foutative"></a><dl>
<dt><a name="index-outative"></a>Property: <strong>outative</strong></dt>
<dd>
<p><code>declare(f, outative)</code> tells the Maxima simplifier that constant factors
in the argument of <code>f</code> can be pulled out.
</p>
<ol>
<li> If <code>f</code> is univariate, whenever the simplifier encounters <code>f</code> applied
to a product, that product will be partitioned into factors that are constant
and factors that are not and the constant factors will be pulled out. E.g.,
<code>f(a*x)</code> will simplify to <code>a*f(x)</code> where <code>a</code> is a constant.
Non-atomic constant factors will not be pulled out.
</li><li> If <code>f</code> is a function of 2 or more arguments, outativity is defined as in
the case of <code><a href="maxima_139.html#sum">sum</a></code> or <code><a href="maxima_104.html#integrate">integrate</a></code>, i.e., <code>f (a*g(x), x)</code> will
simplify to <code>a * f(g(x), x)</code> for <code>a</code> free of <code>x</code>.
</li></ol>
<p><code><a href="maxima_139.html#sum">sum</a></code>, <code><a href="maxima_104.html#integrate">integrate</a></code>, and <code><a href="maxima_99.html#limit">limit</a></code> are all <code>outative</code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) F1 (100 * x);
(%o1) F1(100 x)
</pre><pre class="example">(%i2) declare (F1, outative);
(%o2) done
</pre><pre class="example">(%i3) F1 (100 * x);
(%o3) 100 F1(x)
</pre><pre class="example">(%i4) declare (zz, constant);
(%o4) done
</pre><pre class="example">(%i5) F1 (zz * y);
(%o5) zz F1(y)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·</div></dd></dl>
<a name="radcan"></a><a name="Item_003a-Simplification_002fdeffn_002fradcan"></a><dl>
<dt><a name="index-radcan"></a>Function: <strong>radcan</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Simplifies <var>expr</var>, which can contain logs, exponentials, and radicals, by
converting it into a form which is canonical over a large class of expressions
and a given ordering of variables; that is, all functionally equivalent forms
are mapped into a unique form. For a somewhat larger class of expressions,
<code>radcan</code> produces a regular form. Two equivalent expressions in this class
do not necessarily have the same appearance, but their difference can be
simplified by <code>radcan</code> to zero.
</p>
<p>For some expressions <code>radcan</code> is quite time consuming. This is the cost
of exploring certain relationships among the components of the expression for
simplifications based on factoring and partial-fraction expansions of exponents.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) radcan((log(x+x^2)-log(x))^a/log(1+x)^(a/2));
a/2
(%o1) log(x + 1)
</pre><pre class="example">(%i2) radcan((log(1+2*a^x+a^(2*x))/log(1+a^x)));
(%o2) 2
</pre><pre class="example">(%i3) radcan((%e^x-1)/(1+%e^(x/2)));
x/2
(%o3) %e - 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-functions">Simplification functions</a>
·</div></dd></dl>
<a name="radexpand"></a><a name="Item_003a-Simplification_002fdefvr_002fradexpand"></a><dl>
<dt><a name="index-radexpand"></a>Option variable: <strong>radexpand</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>radexpand</code> controls some simplifications of radicals.
</p>
<p>When <code>radexpand</code> is <code>all</code>, causes nth roots of factors of a product
which are powers of n to be pulled outside of the radical. E.g. if
<code>radexpand</code> is <code>all</code>, <code>sqrt (16*x^2)</code> simplifies to <code>4*x</code>.
</p>
<p>More particularly, consider <code>sqrt (x^2)</code>.
</p><ul>
<li> If <code>radexpand</code> is <code>all</code> or <code>assume (x > 0)</code> has been executed,
<code>sqrt(x^2)</code> simplifies to <code>x</code>.
</li><li> If <code>radexpand</code> is <code>true</code> and <code>domain</code> is <code>real</code>
(its default), <code>sqrt(x^2)</code> simplifies to <code>abs(x)</code>.
</li><li> If <code>radexpand</code> is <code>false</code>, or <code>radexpand</code> is <code>true</code> and
<code>domain</code> is <code>complex</code>, <code>sqrt(x^2)</code> is not simplified.
</li></ul>
<p>Note that <code>domain</code> only matters when <code>radexpand</code> is <code>true</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="rassociative"></a><a name="Item_003a-Simplification_002fdefvr_002frassociative"></a><dl>
<dt><a name="index-rassociative"></a>Property: <strong>rassociative</strong></dt>
<dd>
<p><code>declare (g, rassociative)</code> tells the Maxima
simplifier that <code>g</code> is right-associative. E.g.,
<code>g(g(a, b), g(c, d))</code> simplifies to <code>g(a, g(b, g(c, d)))</code>.
</p>
<p>See also <code><a href="#lassociative">lassociative</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·</div></dd></dl>
<a name="scsimp"></a><a name="Item_003a-Simplification_002fdeffn_002fscsimp"></a><dl>
<dt><a name="index-scsimp"></a>Function: <strong>scsimp</strong> <em>(<var>expr</var>, <var>rule_1</var>, …, <var>rule_n</var>)</em></dt>
<dd>
<p>Sequential Comparative Simplification (method due to Stoute).
<code>scsimp</code> attempts to simplify <var>expr</var>
according to the rules <var>rule_1</var>, …, <var>rule_n</var>.
If a smaller expression is obtained, the process repeats. Otherwise after all
simplifications are tried, it returns the original answer.
</p>
<p><code>example (scsimp)</code> displays some examples.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Simplification-functions">Simplification functions</a>
·</div></dd></dl>
<a name="simp"></a><a name="Item_003a-Simplification_002fdefvr_002fsimp"></a><dl>
<dt><a name="index-simp"></a>Option variable: <strong>simp</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p><code>simp</code> enables simplification. This is the default. <code>simp</code> is also
an <code>evflag</code>, which is recognized by the function <code>ev</code>. See <code><a href="maxima_43.html#ev">ev</a></code>.
</p>
<p>When <code>simp</code> is used as an <code>evflag</code> with a value <code>false</code>, the
simplification is suppressed only during the evaluation phase of an expression.
The flag does not suppress the simplification which follows the evaluation
phase.
</p>
<p>Many Maxima functions and operations require simplification to be enabled to work normally.
When simplification is disabled, many results will be incomplete,
and in addition there may be incorrect results or program errors.
</p>
<p>Examples:
</p>
<p>The simplification is switched off globally. The expression <code>sin(1.0)</code> is
not simplified to its numerical value. The <code>simp</code>-flag switches the
simplification on.
</p>
<div class="example">
<pre class="example">(%i1) simp:false;
(%o1) false
</pre><pre class="example">(%i2) sin(1.0);
(%o2) sin(1.0)
</pre><pre class="example">(%i3) sin(1.0),simp;
(%o3) 0.8414709848078965
</pre></div>
<p>The simplification is switched on again. The <code>simp</code>-flag cannot suppress
the simplification completely. The output shows a simplified expression, but
the variable <code>x</code> has an unsimplified expression as a value, because the
assignment has occurred during the evaluation phase of the expression.
</p>
<div class="example">
<pre class="example">(%i1) simp:true;
(%o1) true
</pre><pre class="example">(%i2) x:sin(1.0),simp:false;
(%o2) 0.8414709848078965
</pre><pre class="example">(%i3) :lisp $x
((%SIN) 1.0)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Evaluation-flags">Evaluation flags</a>
·</div></dd></dl>
<a name="symmetric"></a><a name="Item_003a-Simplification_002fdefvr_002fsymmetric"></a><dl>
<dt><a name="index-symmetric"></a>Property: <strong>symmetric</strong></dt>
<dd>
<p><code>declare (h, symmetric)</code> tells the Maxima
simplifier that <code>h</code> is a symmetric function. E.g., <code>h (x, z, y)</code>
simplifies to <code>h (x, y, z)</code>.
</p>
<p><code><a href="#commutative">commutative</a></code> is synonymous with <code>symmetric</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·</div></dd></dl>
<a name="xthru"></a><a name="Item_003a-Simplification_002fdeffn_002fxthru"></a><dl>
<dt><a name="index-xthru"></a>Function: <strong>xthru</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Combines all terms of <var>expr</var> (which should be a sum) over a common
denominator without expanding products and exponentiated sums as <code>ratsimp</code>
does. <code>xthru</code> cancels common factors in the numerator and denominator of
rational expressions but only if the factors are explicit.
</p>
<p>Sometimes it is better to use <code>xthru</code> before <code>ratsimp</code>ing an
expression in order to cause explicit factors of the gcd of the numerator and
denominator to be canceled thus simplifying the expression to be
<code>ratsimp</code>ed.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) ((x+2)^20 - 2*y)/(x+y)^20 + (x+y)^(-19) - x/(x+y)^20;
20
1 (x + 2) - 2 y x
(%o1) --------- + --------------- - ---------
19 20 20
(y + x) (y + x) (y + x)
</pre><pre class="example">(%i2) xthru (%);
20
(x + 2) - y
(%o2) -------------
20
(y + x)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Expressions">Expressions</a>
·</div></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="maxima_45.html#Introduction-to-Simplification" accesskey="p" rel="previous">Introduction to Simplification</a>, Up: <a href="maxima_44.html#Simplification" accesskey="u" rel="up">Simplification</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|