1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions for Numbers</title>
<meta name="description" content="Maxima 5.47.0 Manual: Functions for Numbers">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions for Numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_47.html#Elementary-Functions" rel="up" title="Elementary Functions">
<link href="maxima_49.html#Functions-for-Complex-Numbers" rel="next" title="Functions for Complex Numbers">
<link href="maxima_47.html#Elementary-Functions" rel="previous" title="Elementary Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-for-Numbers"></a>
<div class="header">
<p>
Next: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="n" rel="next">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-for-Numbers-1"></a>
<h3 class="section">10.1 Functions for Numbers</h3>
<a name="abs"></a><a name="Item_003a-MathFunctions_002fdeffn_002fabs"></a><dl>
<dt><a name="index-abs"></a>Function: <strong>abs</strong> <em>(<var>z</var>)</em></dt>
<dd>
<p>The <code>abs</code> function represents the mathematical absolute value function and
works for both numerical and symbolic values. If the argument, <var>z</var>, is a
real or complex number, <code>abs</code> returns the absolute value of <var>z</var>. If
possible, symbolic expressions using the absolute value function are
also simplified.
</p>
<p>Maxima can differentiate, integrate and calculate limits for expressions
containing <code>abs</code>. The <code>abs_integrate</code> package further extends
Maxima’s ability to calculate integrals involving the abs function. See
(%i12) in the examples below.
</p>
<p>When applied to a list or matrix, <code>abs</code> automatically distributes over
the terms. Similarly, it distributes over both sides of an
equation. To alter this behaviour, see the variable <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<p>See also <code><a href="maxima_49.html#cabs">cabs</a></code>.
</p>
<p>Examples:
</p>
<p>Calculation of <code>abs</code> for real and complex numbers, including numerical
constants and various infinities. The first example shows how <code>abs</code>
distributes over the elements of a list.
</p>
<div class="example">
<pre class="example">(%i1) abs([-4, 0, 1, 1+%i]);
(%o1) [4, 0, 1, sqrt(2)]
(%i2) abs((1+%i)*(1-%i));
(%o2) 2
(%i3) abs(%e+%i);
2
(%o3) sqrt(%e + 1)
(%i4) abs([inf, infinity, minf]);
(%o4) [inf, inf, inf]
</pre></div>
<p>Simplification of expressions containing <code>abs</code>:
</p>
<div class="example">
<pre class="example">(%i5) abs(x^2);
2
(%o5) x
(%i6) abs(x^3);
2
(%o6) x abs(x)
(%i7) abs(abs(x));
(%o7) abs(x)
(%i8) abs(conjugate(x));
(%o8) abs(x)
</pre></div>
<p>Integrating and differentiating with the <code>abs</code> function. Note that more
integrals involving the <code>abs</code> function can be performed, if the
<code>abs_integrate</code> package is loaded. The last example shows the Laplace
transform of <code>abs</code>: see <code><a href="maxima_104.html#laplace">laplace</a></code>.
</p>
<div class="example">
<pre class="example">(%i9) diff(x*abs(x),x),expand;
(%o9) 2 abs(x)
(%i10) integrate(abs(x),x);
x abs(x)
(%o10) --------
2
(%i11) integrate(x*abs(x),x);
/
[
(%o11) I x abs(x) dx
]
/
(%i12) load("abs_integrate")$
(%i13) integrate(x*abs(x),x);
2 3
x abs(x) x signum(x)
(%o13) --------- - ------------
2 6
(%i14) integrate(abs(x),x,-2,%pi);
2
%pi
(%o14) ---- + 2
2
(%i15) laplace(abs(x),x,s);
1
(%o15) --
2
s
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="ceiling"></a><a name="Item_003a-MathFunctions_002fdeffn_002fceiling"></a><dl>
<dt><a name="index-ceiling"></a>Function: <strong>ceiling</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>When <var>x</var> is a real number, return the least integer that
is greater than or equal to <var>x</var>.
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example),
<code>ceiling</code> evaluates <var>x</var> using big floating point numbers, and
applies <code>ceiling</code> to the resulting big float. Because <code>ceiling</code> uses
floating point evaluation, it’s possible, although unlikely, that <code>ceiling</code>
could return an erroneous value for constant inputs. To guard against errors,
the floating point evaluation is done using three values for <code><a href="maxima_13.html#fpprec">fpprec</a></code>.
</p>
<p>For non-constant inputs, <code>ceiling</code> tries to return a simplified value.
Here are examples of the simplifications that <code>ceiling</code> knows about:
</p>
<div class="example">
<pre class="example">(%i1) ceiling (ceiling (x));
(%o1) ceiling(x)
</pre><pre class="example">(%i2) ceiling (floor (x));
(%o2) floor(x)
</pre><pre class="example">(%i3) declare (n, integer)$
</pre><pre class="example">(%i4) [ceiling (n), ceiling (abs (n)), ceiling (max (n, 6))];
(%o4) [n, abs(n), max(6, n)]
</pre><pre class="example">(%i5) assume (x > 0, x < 1)$
</pre><pre class="example">(%i6) ceiling (x);
(%o6) 1
</pre><pre class="example">(%i7) tex (ceiling (a));
$$\left \lceil a \right \rceil$$
(%o7) false
</pre></div>
<p>The <code>ceiling</code> function distributes over lists, matrices and equations.
See <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<p>Finally, for all inputs that are manifestly complex, <code>ceiling</code> returns
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be declared to
be <code>integervalued</code>. Both the <code>ceiling</code> and <code><a href="#floor">floor</a></code> functions
can use this information; for example:
</p>
<div class="example">
<pre class="example">(%i1) declare (f, integervalued)$
</pre><pre class="example">(%i2) floor (f(x));
(%o2) f(x)
</pre><pre class="example">(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1
</pre></div>
<p>Example use:
</p>
<div class="example">
<pre class="example">(%i1) unitfrac(r) := block([uf : [], q],
if not(ratnump(r)) then
error("unitfrac: argument must be a rational number"),
while r # 0 do (
uf : cons(q : 1/ceiling(1/r), uf),
r : r - q),
reverse(uf));
(%o1) unitfrac(r) := block([uf : [], q],
if not ratnump(r) then
error("unitfrac: argument must be a rational number"),
1
while r # 0 do (uf : cons(q : ----------, uf), r : r - q),
1
ceiling(-)
r
reverse(uf))
</pre><pre class="example">(%i2) unitfrac (9/10);
1 1 1
(%o2) [-, -, --]
2 3 15
</pre><pre class="example">(%i3) apply ("+", %);
9
(%o3) --
10
</pre><pre class="example">(%i4) unitfrac (-9/10);
1
(%o4) [- 1, --]
10
</pre><pre class="example">(%i5) apply ("+", %);
9
(%o5) - --
10
</pre><pre class="example">(%i6) unitfrac (36/37);
1 1 1 1 1
(%o6) [-, -, -, --, ----]
2 3 8 69 6808
</pre><pre class="example">(%i7) apply ("+", %);
36
(%o7) --
37
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="entier"></a><a name="Item_003a-MathFunctions_002fdeffn_002fentier"></a><dl>
<dt><a name="index-entier"></a>Function: <strong>entier</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Returns the largest integer less than or equal to <var>x</var> where <var>x</var> is
numeric. <code><a href="#fix">fix</a></code> (as in <code>fixnum</code>) is a synonym for this, so
<code>fix(<var>x</var>)</code> is precisely the same.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="floor"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffloor"></a><dl>
<dt><a name="index-floor"></a>Function: <strong>floor</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>When <var>x</var> is a real number, return the largest integer that is less than or
equal to <var>x</var>.
</p>
<p>If <var>x</var> is a constant expression (<code>10 * %pi</code>, for example), <code>floor</code>
evaluates <var>x</var> using big floating point numbers, and applies <code>floor</code> to
the resulting big float. Because <code>floor</code> uses floating point evaluation,
it’s possible, although unlikely, that <code>floor</code> could return an erroneous
value for constant inputs. To guard against errors, the floating point
evaluation is done using three values for <code><a href="maxima_13.html#fpprec">fpprec</a></code>.
</p>
<p>For non-constant inputs, <code>floor</code> tries to return a simplified value. Here
are examples of the simplifications that <code>floor</code> knows about:
</p>
<div class="example">
<pre class="example">(%i1) floor (ceiling (x));
(%o1) ceiling(x)
</pre><pre class="example">(%i2) floor (floor (x));
(%o2) floor(x)
</pre><pre class="example">(%i3) declare (n, integer)$
</pre><pre class="example">(%i4) [floor (n), floor (abs (n)), floor (min (n, 6))];
(%o4) [n, abs(n), min(6, n)]
</pre><pre class="example">(%i5) assume (x > 0, x < 1)$
</pre><pre class="example">(%i6) floor (x);
(%o6) 0
</pre><pre class="example">(%i7) tex (floor (a));
$$\left \lfloor a \right \rfloor$$
(%o7) false
</pre></div>
<p>The <code>floor</code> function distributes over lists, matrices and equations.
See <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<p>Finally, for all inputs that are manifestly complex, <code>floor</code> returns
a noun form.
</p>
<p>If the range of a function is a subset of the integers, it can be declared to
be <code>integervalued</code>. Both the <code><a href="#ceiling">ceiling</a></code> and <code>floor</code> functions
can use this information; for example:
</p>
<div class="example">
<pre class="example">(%i1) declare (f, integervalued)$
</pre><pre class="example">(%i2) floor (f(x));
(%o2) f(x)
</pre><pre class="example">(%i3) ceiling (f(x) - 1);
(%o3) f(x) - 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="fix"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffix"></a><dl>
<dt><a name="index-fix"></a>Function: <strong>fix</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>A synonym for <code>entier (<var>x</var>)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="hstep"></a><a name="Item_003a-MathFunctions_002fdeffn_002fhstep"></a><dl>
<dt><a name="index-hstep"></a>Function: <strong>hstep</strong> <em>(<var>x</var>)</em></dt>
<dd><p>The Heaviside unit step function, equal to 0 if <var>x</var> is negative,
equal to 1 if <var>x</var> is positive and equal to 1/2 if <var>x</var> is equal
to zero.
</p>
<p>If you want a unit step function that takes on the value of 0 at <var>x</var>
equal to zero, use <code><a href="maxima_338.html#unit_005fstep">unit_step</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Laplace-transform">Laplace transform</a>
·<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div>
</dd></dl>
<a name="lmax"></a><a name="Item_003a-MathFunctions_002fdeffn_002flmax"></a><dl>
<dt><a name="index-lmax"></a>Function: <strong>lmax</strong> <em>(<var>L</var>)</em></dt>
<dd>
<p>When <var>L</var> is a list or a set, return <code>apply ('max, args (<var>L</var>))</code>.
When <var>L</var> is not a list or a set, signal an error.
See also <code><a href="#lmin">lmin</a></code> and <code><a href="#max">max</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·<a href="maxima_424.html#Category_003a-Lists">Lists</a>
·<a href="maxima_424.html#Category_003a-Sets">Sets</a>
·</div></dd></dl>
<a name="lmin"></a><a name="Item_003a-MathFunctions_002fdeffn_002flmin"></a><dl>
<dt><a name="index-lmin"></a>Function: <strong>lmin</strong> <em>(<var>L</var>)</em></dt>
<dd>
<p>When <var>L</var> is a list or a set, return <code>apply ('min, args (<var>L</var>))</code>.
When <var>L</var> is not a list or a set, signal an error.
See also <code><a href="#lmax">lmax</a></code> and <code><a href="#min">min</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·<a href="maxima_424.html#Category_003a-Lists">Lists</a>
·<a href="maxima_424.html#Category_003a-Sets">Sets</a>
·</div></dd></dl>
<a name="max"></a><a name="Item_003a-MathFunctions_002fdeffn_002fmax"></a><dl>
<dt><a name="index-max"></a>Function: <strong>max</strong> <em>(<var>x_1</var>, …, <var>x_n</var>)</em></dt>
<dd>
<p>Return a simplified value for the numerical maximum of the expressions <var>x_1</var>
through <var>x_n</var>. For an empty argument list, <code>max</code> yields <code>minf</code>.
</p>
<p>The option variable <code>maxmin_effort</code> controls which simplification methods are
applied. Using the default value of <em>twelve</em> for <code>maxmin_effort</code>,
<code>max</code> uses <em>all</em> available simplification methods. To to inhibit all
simplifications, set <code>maxmin_effort</code> to zero.
</p>
<p>When <code>maxmin_effort</code> is one or more, for an explicit list of real numbers,
<code>max</code> returns a number.
</p>
<p>Unless <code>max</code> needs to simplify a lengthy list of expressions, we suggest using
the default value of <code>maxmin_effort</code>. Setting <code>maxmin_effort</code> to zero
(no simplifications), will cause problems for some Maxima functions; accordingly,
generally <code>maxmin_effort</code> should be nonzero.
</p>
<p>See also <code><a href="#min">min</a></code>, <code><a href="#lmax">lmax</a></code>., and <code><a href="#lmin">lmin</a></code>..
</p>
<p><b>Examples:</b>
</p>
<p>In the first example, setting <code>maxmin_effort</code> to zero suppresses simplifications.
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 0], max(1,2,x,x, max(a,b)));
(%o1) max(1,2,max(a,b),x,x)
(%i2) block([maxmin_effort : 1], max(1,2,x,x, max(a,b)));
(%o2) max(2,a,b,x)
</pre></div>
<p>When <code>maxmin_effort</code> is two or more, <code>max</code> compares pairs of members:
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 1], max(x,x+1,x+3));
(%o1) max(x,x+1,x+3)
(%i2) block([maxmin_effort : 2], max(x,x+1,x+3));
(%o2) x+3
</pre></div>
<p>Finally, when <code>maxmin_effort</code> is three or more, <code>max</code> compares triples
members and excludes those that are in between; for example
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 4], max(x, 2*x, 3*x, 4*x));
(%o1) max(x,4*x)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="min"></a><a name="Item_003a-MathFunctions_002fdeffn_002fmin"></a><dl>
<dt><a name="index-min"></a>Function: <strong>min</strong> <em>(<var>x_1</var>, …, <var>x_n</var>)</em></dt>
<dd>
<p>Return a simplified value for the numerical minimum of the expressions <var>x_1</var>
through <var>x_n</var>. For an empty argument list, <code>minf</code> yields <code>inf</code>.
</p>
<p>The option variable <code>maxmin_effort</code> controls which simplification methods are
applied. Using the default value of <em>twelve</em> for <code>maxmin_effort</code>,
<code>max</code> uses <em>all</em> available simplification methods. To to inhibit all
simplifications, set <code>maxmin_effort</code> to zero.
</p>
<p>When <code>maxmin_effort</code> is one or more, for an explicit list of real numbers,
<code>min</code> returns a number.
</p>
<p>Unless <code>min</code> needs to simplify a lengthy list of expressions, we suggest using
the default value of <code>maxmin_effort</code>. Setting <code>maxmin_effort</code> to zero
(no simplifications), will cause problems for some Maxima functions; accordingly,
generally <code>maxmin_effort</code> should be nonzero.
</p>
<p>See also <code><a href="#max">max</a></code>, <code><a href="#lmax">lmax</a></code>., and <code><a href="#lmin">lmin</a></code>..
</p>
<p><b>Examples:</b>
</p>
<p>In the first example, setting <code>maxmin_effort</code> to zero suppresses simplifications.
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 0], min(1,2,x,x, min(a,b)));
(%o1) min(1,2,a,b,x,x)
(%i2) block([maxmin_effort : 1], min(1,2,x,x, min(a,b)));
(%o2) min(1,a,b,x)
</pre></div>
<p>When <code>maxmin_effort</code> is two or more, <code>min</code> compares pairs of members:
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 1], min(x,x+1,x+3));
(%o1) min(x,x+1,x+3)
(%i2) block([maxmin_effort : 2], min(x,x+1,x+3));
(%o2) x
</pre></div>
<p>Finally, when <code>maxmin_effort</code> is three or more, <code>min</code> compares triples
members and excludes those that are in between; for example
</p><div class="example">
<pre class="example">(%i1) block([maxmin_effort : 4], min(x, 2*x, 3*x, 4*x));
(%o1) max(x,4*x)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="round"></a><a name="Item_003a-MathFunctions_002fdeffn_002fround"></a><dl>
<dt><a name="index-round"></a>Function: <strong>round</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>When <var>x</var> is a real number, returns the closest integer to <var>x</var>.
Multiples of 1/2 are rounded to the nearest even integer. Evaluation of
<var>x</var> is similar to <code><a href="#floor">floor</a></code> and <code><a href="#ceiling">ceiling</a></code>.
</p>
<p>The <code>round</code> function distributes over lists, matrices and equations.
See <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="signum"></a><a name="Item_003a-MathFunctions_002fdeffn_002fsignum"></a><dl>
<dt><a name="index-signum"></a>Function: <strong>signum</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>For either real or complex numbers <var>x</var>, the signum function returns
0 if <var>x</var> is zero; for a nonzero numeric input <var>x</var>, the signum function
returns <code>x/abs(x)</code>.
</p>
<p>For non-numeric inputs, Maxima attempts to determine the sign of the input.
When the sign is negative, zero, or positive, <code>signum</code> returns -1,0, 1,
respectively. For all other values for the sign, <code>signum</code> a simplified but
equivalent form. The simplifications include reflection (<code>signum(-x)</code>
gives <code>-signum(x)</code>) and multiplicative identity (<code>signum(x*y)</code> gives
<code>signum(x) * signum(y)</code>).
</p>
<p>The <code>signum</code> function distributes over a list, a matrix, or an
equation. See <code><a href="maxima_63.html#sign">sign</a></code> and <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="truncate"></a><a name="Item_003a-MathFunctions_002fdeffn_002ftruncate"></a><dl>
<dt><a name="index-truncate"></a>Function: <strong>truncate</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>When <var>x</var> is a real number, return the closest integer to <var>x</var> not
greater in absolute value than <var>x</var>. Evaluation of <var>x</var> is similar
to <code><a href="#floor">floor</a></code> and <code><a href="#ceiling">ceiling</a></code>.
</p>
<p>The <code>truncate</code> function distributes over lists, matrices and equations.
See <code><a href="maxima_46.html#distribute_005fover">distribute_over</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
·</div></dd></dl>
<a name="Item_003a-MathFunctions_002fnode_002fFunctions-for-Complex-Numbers"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="n" rel="next">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|