File: maxima_49.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (381 lines) | stat: -rw-r--r-- 17,688 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions for Complex Numbers</title>

<meta name="description" content="Maxima 5.47.0 Manual: Functions for Complex Numbers">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions for Complex Numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_47.html#Elementary-Functions" rel="up" title="Elementary Functions">
<link href="maxima_50.html#Combinatorial-Functions" rel="next" title="Combinatorial Functions">
<link href="maxima_48.html#Functions-for-Numbers" rel="previous" title="Functions for Numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-for-Complex-Numbers"></a>
<div class="header">
<p>
Next: <a href="maxima_50.html#Combinatorial-Functions" accesskey="n" rel="next">Combinatorial Functions</a>, Previous: <a href="maxima_48.html#Functions-for-Numbers" accesskey="p" rel="previous">Functions for Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-for-Complex-Numbers-1"></a>
<h3 class="section">10.2 Functions for Complex Numbers</h3>

<a name="cabs"></a><a name="Item_003a-MathFunctions_002fdeffn_002fcabs"></a><dl>
<dt><a name="index-cabs"></a>Function: <strong>cabs</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Calculates the absolute value of an expression representing a complex
number.  Unlike the function <code><a href="maxima_48.html#abs">abs</a></code>, the <code>cabs</code> function always
decomposes its argument into a real and an imaginary part.  If <code>x</code> and
<code>y</code> represent real variables or expressions, the <code>cabs</code> function
calculates the absolute value of <code>x + %i*y</code> as
</p>
<div class="example">
<pre class="example">(%i1) cabs (1);
(%o1)                           1
</pre><pre class="example">(%i2) cabs (1 + %i);
(%o2)                        sqrt(2)
</pre><pre class="example">(%i3) cabs (exp (%i));
(%o3)                           1
</pre><pre class="example">(%i4) cabs (exp (%pi * %i));
(%o4)                           1
</pre><pre class="example">(%i5) cabs (exp (3/2 * %pi * %i));
(%o5)                           1
</pre><pre class="example">(%i6) cabs (17 * exp (2 * %i));
(%o6)                          17
</pre></div>

<p>If <code>cabs</code> returns a noun form this most commonly is caused by
some properties of the variables involved not being known:
</p>
<div class="example">
<pre class="example">(%i1) cabs (a+%i*b);
                                2    2
(%o1)                     sqrt(b  + a )
</pre><pre class="example">(%i2) declare(a,real,b,real);
(%o2)                         done
</pre><pre class="example">(%i3) cabs (a+%i*b);
                                2    2
(%o3)                     sqrt(b  + a )
</pre><pre class="example">(%i4) assume(a&gt;0,b&gt;0);
(%o4)                    [a &gt; 0, b &gt; 0]
</pre><pre class="example">(%i5) cabs (a+%i*b);
                                2    2
(%o5)                     sqrt(b  + a )
</pre></div>

<p>The <code>cabs</code> function can use known properties like symmetry properties of
complex functions to help it calculate the absolute value of an expression.  If
such identities exist, they can be advertised to <code>cabs</code> using function
properties.  The symmetries that <code>cabs</code> understands are: mirror symmetry,
conjugate function and complex characteristic.
</p>
<p><code>cabs</code> is a verb function and is not suitable for symbolic
calculations.  For such calculations (including integration,
differentiation and taking limits of expressions containing absolute
values), use <code><a href="maxima_48.html#abs">abs</a></code>.
</p>
<p>The result of <code>cabs</code> can include the absolute value function,
<code><a href="maxima_48.html#abs">abs</a></code>, and the arc tangent, <code><a href="maxima_55.html#atan2">atan2</a></code>.
</p>
<p>When applied to a list or matrix, <code>cabs</code> automatically distributes over
the terms.  Similarly, it distributes over both sides of an equation.
</p>
<p>For further ways to compute with complex numbers, see the functions
<code><a href="#rectform">rectform</a></code>, <code><a href="#realpart">realpart</a></code>, <code><a href="#imagpart">imagpart</a></code>,<!-- /@w -->
<code><a href="#carg">carg</a></code>, <code><a href="#conjugate">conjugate</a></code> and <code><a href="#polarform">polarform</a></code>.
</p>
<p>Examples:
</p>
<p>Examples with <code><a href="maxima_51.html#sqrt">sqrt</a></code> and <code><a href="maxima_55.html#sin">sin</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) cabs(sqrt(1+%i*x));
                             2     1/4
(%o1)                      (x  + 1)
(%i2) cabs(sin(x+%i*y));
                    2        2         2        2
(%o2)       sqrt(cos (x) sinh (y) + sin (x) cosh (y))
</pre></div>

<p>The error function, <code><a href="maxima_89.html#erf">erf</a></code>, has mirror symmetry, which is used here in
the calculation of the absolute value with a complex argument:
</p>
<div class="example">
<pre class="example">(%i3) cabs(erf(x+%i*y));
                                          2
           (erf(%i y + x) - erf(%i y - x))
(%o3) sqrt(--------------------------------
                          4
                                                               2
                                (erf(%i y + x) + erf(%i y - x))
                              - --------------------------------)
                                               4
</pre></div>

<p>Maxima knows complex identities for the Bessel functions, which allow
it to compute the absolute value for complex arguments.  Here is an
example for <code><a href="maxima_85.html#bessel_005fj">bessel_j</a></code>.
</p>
<div class="example">
<pre class="example">(%i4) cabs(bessel_j(1,%i));
(%o4)                 abs(bessel_j(1, %i))
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>

<a name="carg"></a><a name="Item_003a-MathFunctions_002fdeffn_002fcarg"></a><dl>
<dt><a name="index-carg"></a>Function: <strong>carg</strong> <em>(<var>z</var>)</em></dt>
<dd>
<p>Returns the complex argument of <var>z</var>.  The complex argument is an angle
<code>theta</code> in <code>(-%pi, %pi]</code> such that <code>r exp (theta %i) = <var>z</var></code>
where <code>r</code> is the magnitude of <var>z</var>.
</p>
<p><code>carg</code> is a computational function, not a simplifying function.
</p>
<p>See also <code><a href="maxima_48.html#abs">abs</a></code> (complex magnitude), <code><a href="#polarform">polarform</a></code>,<!-- /@w -->
<code><a href="#rectform">rectform</a></code>, <code><a href="#realpart">realpart</a></code>, and <code><a href="#imagpart">imagpart</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) carg (1);
(%o1)                           0
</pre><pre class="example">(%i2) carg (1 + %i);
                               %pi
(%o2)                          ---
                                4
</pre><pre class="example">(%i3) carg (exp (%i));
                               sin(1)
(%o3)                     atan(------)
                               cos(1)
</pre><pre class="example">(%i4) carg (exp (%pi * %i));
(%o4)                          %pi
</pre><pre class="example">(%i5) carg (exp (3/2 * %pi * %i));
                                %pi
(%o5)                         - ---
                                 2
</pre><pre class="example">(%i6) carg (17 * exp (2 * %i));
                            sin(2)
(%o6)                  atan(------) + %pi
                            cos(2)
</pre></div>

<p>If <code>carg</code> returns a noun form this most commonly is caused by
some properties of the variables involved not being known:
</p>
<div class="example">
<pre class="example">(%i1) carg (a+%i*b);
(%o1)                      atan2(b, a)
</pre><pre class="example">(%i2) declare(a,real,b,real);
(%o2)                         done
</pre><pre class="example">(%i3) carg (a+%i*b);
(%o3)                      atan2(b, a)
</pre><pre class="example">(%i4) assume(a&gt;0,b&gt;0);
(%o4)                    [a &gt; 0, b &gt; 0]
</pre><pre class="example">(%i5) carg (a+%i*b);
                                  b
(%o5)                        atan(-)
                                  a
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>

<a name="conjugate"></a><a name="Item_003a-MathFunctions_002fdeffn_002fconjugate"></a><dl>
<dt><a name="index-conjugate"></a>Function: <strong>conjugate</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Returns the complex conjugate of <var>x</var>.
</p>
<div class="example">
<pre class="example">(%i1) declare ([aa, bb], real, cc, complex, ii, imaginary);
(%o1)                         done
</pre><pre class="example">(%i2) conjugate (aa + bb*%i);
(%o2)                      aa - %i bb
</pre><pre class="example">(%i3) conjugate (cc);
(%o3)                     conjugate(cc)
</pre><pre class="example">(%i4) conjugate (ii);
(%o4)                         - ii
</pre><pre class="example">(%i5) conjugate (xx + yy);
(%o5)                        yy + xx
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>

<a name="imagpart"></a><a name="Item_003a-MathFunctions_002fdeffn_002fimagpart"></a><dl>
<dt><a name="index-imagpart"></a>Function: <strong>imagpart</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns the imaginary part of the expression <var>expr</var>.
</p>
<p><code>imagpart</code> is a computational function, not a simplifying function.
</p>
<p>See also <code><a href="maxima_48.html#abs">abs</a></code>, <code><a href="#carg">carg</a></code>, <code><a href="#polarform">polarform</a></code>,<!-- /@w -->
<code><a href="#rectform">rectform</a></code>, and <code><a href="#realpart">realpart</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) imagpart (a+b*%i);
(%o1)                           b
</pre><pre class="example">(%i2) imagpart (1+sqrt(2)*%i);
(%o2)                        sqrt(2)
</pre><pre class="example">(%i3) imagpart (1);
(%o3)                           0
</pre><pre class="example">(%i4) imagpart (sqrt(2)*%i);
(%o4)                        sqrt(2)
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>


<a name="polarform"></a><a name="Item_003a-MathFunctions_002fdeffn_002fpolarform"></a><dl>
<dt><a name="index-polarform"></a>Function: <strong>polarform</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns an expression <code>r %e^(%i theta)</code> equivalent to <var>expr</var>,
such that <code>r</code> and <code>theta</code> are purely real.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) polarform(a+b*%i);
                       2    2    %i atan2(b, a)
(%o1)            sqrt(b  + a ) %e
</pre><pre class="example">(%i2) polarform(1+%i);
                                  %i %pi
                                  ------
                                    4
(%o2)                   sqrt(2) %e
</pre><pre class="example">(%i3) polarform(1+2*%i);
                                %i atan(2)
(%o3)                 sqrt(5) %e
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;<a href="maxima_424.html#Category_003a-Exponential-and-logarithm-functions">Exponential and logarithm functions</a>
&middot;</div></dd></dl>

<a name="realpart"></a><a name="Item_003a-MathFunctions_002fdeffn_002frealpart"></a><dl>
<dt><a name="index-realpart"></a>Function: <strong>realpart</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns the real part of <var>expr</var>.  <code>realpart</code> and <code><a href="#imagpart">imagpart</a></code> will
work on expressions involving trigonometric and hyperbolic functions,
as well as square root, logarithm, and exponentiation.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) realpart (a+b*%i);
(%o1)                           a
</pre><pre class="example">(%i2) realpart (1+sqrt(2)*%i);
(%o2)                           1
</pre><pre class="example">(%i3) realpart (sqrt(2)*%i);
(%o3)                           0
</pre><pre class="example">(%i4) realpart (1);
(%o4)                           1
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>

<a name="rectform"></a><a name="Item_003a-MathFunctions_002fdeffn_002frectform"></a><dl>
<dt><a name="index-rectform"></a>Function: <strong>rectform</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns an expression <code>a + b %i</code> equivalent to <var>expr</var>,
such that <var>a</var> and <var>b</var> are purely real.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) rectform(sqrt(2)*%e^(%i*%pi/4));
(%o1)                        %i + 1
</pre><pre class="example">(%i2) rectform(sqrt(b^2+a^2)*%e^(%i*atan2(b, a)));
(%o2)                       %i b + a
</pre><pre class="example">(%i3) rectform(sqrt(5)*%e^(%i*atan(2)));
(%o3)                       2 %i + 1
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
&middot;</div></dd></dl>

<a name="Item_003a-MathFunctions_002fnode_002fCombinatorial-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_50.html#Combinatorial-Functions" accesskey="n" rel="next">Combinatorial Functions</a>, Previous: <a href="maxima_48.html#Functions-for-Numbers" accesskey="p" rel="previous">Functions for Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>