1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions for Complex Numbers</title>
<meta name="description" content="Maxima 5.47.0 Manual: Functions for Complex Numbers">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions for Complex Numbers">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_47.html#Elementary-Functions" rel="up" title="Elementary Functions">
<link href="maxima_50.html#Combinatorial-Functions" rel="next" title="Combinatorial Functions">
<link href="maxima_48.html#Functions-for-Numbers" rel="previous" title="Functions for Numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-for-Complex-Numbers"></a>
<div class="header">
<p>
Next: <a href="maxima_50.html#Combinatorial-Functions" accesskey="n" rel="next">Combinatorial Functions</a>, Previous: <a href="maxima_48.html#Functions-for-Numbers" accesskey="p" rel="previous">Functions for Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-for-Complex-Numbers-1"></a>
<h3 class="section">10.2 Functions for Complex Numbers</h3>
<a name="cabs"></a><a name="Item_003a-MathFunctions_002fdeffn_002fcabs"></a><dl>
<dt><a name="index-cabs"></a>Function: <strong>cabs</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Calculates the absolute value of an expression representing a complex
number. Unlike the function <code><a href="maxima_48.html#abs">abs</a></code>, the <code>cabs</code> function always
decomposes its argument into a real and an imaginary part. If <code>x</code> and
<code>y</code> represent real variables or expressions, the <code>cabs</code> function
calculates the absolute value of <code>x + %i*y</code> as
</p>
<div class="example">
<pre class="example">(%i1) cabs (1);
(%o1) 1
</pre><pre class="example">(%i2) cabs (1 + %i);
(%o2) sqrt(2)
</pre><pre class="example">(%i3) cabs (exp (%i));
(%o3) 1
</pre><pre class="example">(%i4) cabs (exp (%pi * %i));
(%o4) 1
</pre><pre class="example">(%i5) cabs (exp (3/2 * %pi * %i));
(%o5) 1
</pre><pre class="example">(%i6) cabs (17 * exp (2 * %i));
(%o6) 17
</pre></div>
<p>If <code>cabs</code> returns a noun form this most commonly is caused by
some properties of the variables involved not being known:
</p>
<div class="example">
<pre class="example">(%i1) cabs (a+%i*b);
2 2
(%o1) sqrt(b + a )
</pre><pre class="example">(%i2) declare(a,real,b,real);
(%o2) done
</pre><pre class="example">(%i3) cabs (a+%i*b);
2 2
(%o3) sqrt(b + a )
</pre><pre class="example">(%i4) assume(a>0,b>0);
(%o4) [a > 0, b > 0]
</pre><pre class="example">(%i5) cabs (a+%i*b);
2 2
(%o5) sqrt(b + a )
</pre></div>
<p>The <code>cabs</code> function can use known properties like symmetry properties of
complex functions to help it calculate the absolute value of an expression. If
such identities exist, they can be advertised to <code>cabs</code> using function
properties. The symmetries that <code>cabs</code> understands are: mirror symmetry,
conjugate function and complex characteristic.
</p>
<p><code>cabs</code> is a verb function and is not suitable for symbolic
calculations. For such calculations (including integration,
differentiation and taking limits of expressions containing absolute
values), use <code><a href="maxima_48.html#abs">abs</a></code>.
</p>
<p>The result of <code>cabs</code> can include the absolute value function,
<code><a href="maxima_48.html#abs">abs</a></code>, and the arc tangent, <code><a href="maxima_55.html#atan2">atan2</a></code>.
</p>
<p>When applied to a list or matrix, <code>cabs</code> automatically distributes over
the terms. Similarly, it distributes over both sides of an equation.
</p>
<p>For further ways to compute with complex numbers, see the functions
<code><a href="#rectform">rectform</a></code>, <code><a href="#realpart">realpart</a></code>, <code><a href="#imagpart">imagpart</a></code>,<!-- /@w -->
<code><a href="#carg">carg</a></code>, <code><a href="#conjugate">conjugate</a></code> and <code><a href="#polarform">polarform</a></code>.
</p>
<p>Examples:
</p>
<p>Examples with <code><a href="maxima_51.html#sqrt">sqrt</a></code> and <code><a href="maxima_55.html#sin">sin</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) cabs(sqrt(1+%i*x));
2 1/4
(%o1) (x + 1)
(%i2) cabs(sin(x+%i*y));
2 2 2 2
(%o2) sqrt(cos (x) sinh (y) + sin (x) cosh (y))
</pre></div>
<p>The error function, <code><a href="maxima_89.html#erf">erf</a></code>, has mirror symmetry, which is used here in
the calculation of the absolute value with a complex argument:
</p>
<div class="example">
<pre class="example">(%i3) cabs(erf(x+%i*y));
2
(erf(%i y + x) - erf(%i y - x))
(%o3) sqrt(--------------------------------
4
2
(erf(%i y + x) + erf(%i y - x))
- --------------------------------)
4
</pre></div>
<p>Maxima knows complex identities for the Bessel functions, which allow
it to compute the absolute value for complex arguments. Here is an
example for <code><a href="maxima_85.html#bessel_005fj">bessel_j</a></code>.
</p>
<div class="example">
<pre class="example">(%i4) cabs(bessel_j(1,%i));
(%o4) abs(bessel_j(1, %i))
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="carg"></a><a name="Item_003a-MathFunctions_002fdeffn_002fcarg"></a><dl>
<dt><a name="index-carg"></a>Function: <strong>carg</strong> <em>(<var>z</var>)</em></dt>
<dd>
<p>Returns the complex argument of <var>z</var>. The complex argument is an angle
<code>theta</code> in <code>(-%pi, %pi]</code> such that <code>r exp (theta %i) = <var>z</var></code>
where <code>r</code> is the magnitude of <var>z</var>.
</p>
<p><code>carg</code> is a computational function, not a simplifying function.
</p>
<p>See also <code><a href="maxima_48.html#abs">abs</a></code> (complex magnitude), <code><a href="#polarform">polarform</a></code>,<!-- /@w -->
<code><a href="#rectform">rectform</a></code>, <code><a href="#realpart">realpart</a></code>, and <code><a href="#imagpart">imagpart</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) carg (1);
(%o1) 0
</pre><pre class="example">(%i2) carg (1 + %i);
%pi
(%o2) ---
4
</pre><pre class="example">(%i3) carg (exp (%i));
sin(1)
(%o3) atan(------)
cos(1)
</pre><pre class="example">(%i4) carg (exp (%pi * %i));
(%o4) %pi
</pre><pre class="example">(%i5) carg (exp (3/2 * %pi * %i));
%pi
(%o5) - ---
2
</pre><pre class="example">(%i6) carg (17 * exp (2 * %i));
sin(2)
(%o6) atan(------) + %pi
cos(2)
</pre></div>
<p>If <code>carg</code> returns a noun form this most commonly is caused by
some properties of the variables involved not being known:
</p>
<div class="example">
<pre class="example">(%i1) carg (a+%i*b);
(%o1) atan2(b, a)
</pre><pre class="example">(%i2) declare(a,real,b,real);
(%o2) done
</pre><pre class="example">(%i3) carg (a+%i*b);
(%o3) atan2(b, a)
</pre><pre class="example">(%i4) assume(a>0,b>0);
(%o4) [a > 0, b > 0]
</pre><pre class="example">(%i5) carg (a+%i*b);
b
(%o5) atan(-)
a
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="conjugate"></a><a name="Item_003a-MathFunctions_002fdeffn_002fconjugate"></a><dl>
<dt><a name="index-conjugate"></a>Function: <strong>conjugate</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Returns the complex conjugate of <var>x</var>.
</p>
<div class="example">
<pre class="example">(%i1) declare ([aa, bb], real, cc, complex, ii, imaginary);
(%o1) done
</pre><pre class="example">(%i2) conjugate (aa + bb*%i);
(%o2) aa - %i bb
</pre><pre class="example">(%i3) conjugate (cc);
(%o3) conjugate(cc)
</pre><pre class="example">(%i4) conjugate (ii);
(%o4) - ii
</pre><pre class="example">(%i5) conjugate (xx + yy);
(%o5) yy + xx
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="imagpart"></a><a name="Item_003a-MathFunctions_002fdeffn_002fimagpart"></a><dl>
<dt><a name="index-imagpart"></a>Function: <strong>imagpart</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns the imaginary part of the expression <var>expr</var>.
</p>
<p><code>imagpart</code> is a computational function, not a simplifying function.
</p>
<p>See also <code><a href="maxima_48.html#abs">abs</a></code>, <code><a href="#carg">carg</a></code>, <code><a href="#polarform">polarform</a></code>,<!-- /@w -->
<code><a href="#rectform">rectform</a></code>, and <code><a href="#realpart">realpart</a></code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) imagpart (a+b*%i);
(%o1) b
</pre><pre class="example">(%i2) imagpart (1+sqrt(2)*%i);
(%o2) sqrt(2)
</pre><pre class="example">(%i3) imagpart (1);
(%o3) 0
</pre><pre class="example">(%i4) imagpart (sqrt(2)*%i);
(%o4) sqrt(2)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="polarform"></a><a name="Item_003a-MathFunctions_002fdeffn_002fpolarform"></a><dl>
<dt><a name="index-polarform"></a>Function: <strong>polarform</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns an expression <code>r %e^(%i theta)</code> equivalent to <var>expr</var>,
such that <code>r</code> and <code>theta</code> are purely real.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) polarform(a+b*%i);
2 2 %i atan2(b, a)
(%o1) sqrt(b + a ) %e
</pre><pre class="example">(%i2) polarform(1+%i);
%i %pi
------
4
(%o2) sqrt(2) %e
</pre><pre class="example">(%i3) polarform(1+2*%i);
%i atan(2)
(%o3) sqrt(5) %e
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·<a href="maxima_424.html#Category_003a-Exponential-and-logarithm-functions">Exponential and logarithm functions</a>
·</div></dd></dl>
<a name="realpart"></a><a name="Item_003a-MathFunctions_002fdeffn_002frealpart"></a><dl>
<dt><a name="index-realpart"></a>Function: <strong>realpart</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns the real part of <var>expr</var>. <code>realpart</code> and <code><a href="#imagpart">imagpart</a></code> will
work on expressions involving trigonometric and hyperbolic functions,
as well as square root, logarithm, and exponentiation.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) realpart (a+b*%i);
(%o1) a
</pre><pre class="example">(%i2) realpart (1+sqrt(2)*%i);
(%o2) 1
</pre><pre class="example">(%i3) realpart (sqrt(2)*%i);
(%o3) 0
</pre><pre class="example">(%i4) realpart (1);
(%o4) 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="rectform"></a><a name="Item_003a-MathFunctions_002fdeffn_002frectform"></a><dl>
<dt><a name="index-rectform"></a>Function: <strong>rectform</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns an expression <code>a + b %i</code> equivalent to <var>expr</var>,
such that <var>a</var> and <var>b</var> are purely real.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) rectform(sqrt(2)*%e^(%i*%pi/4));
(%o1) %i + 1
</pre><pre class="example">(%i2) rectform(sqrt(b^2+a^2)*%e^(%i*atan2(b, a)));
(%o2) %i b + a
</pre><pre class="example">(%i3) rectform(sqrt(5)*%e^(%i*atan(2)));
(%o3) 2 %i + 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Complex-variables">Complex variables</a>
·</div></dd></dl>
<a name="Item_003a-MathFunctions_002fnode_002fCombinatorial-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_50.html#Combinatorial-Functions" accesskey="n" rel="next">Combinatorial Functions</a>, Previous: <a href="maxima_48.html#Functions-for-Numbers" accesskey="p" rel="previous">Functions for Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|