1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Combinatorial Functions</title>
<meta name="description" content="Maxima 5.47.0 Manual: Combinatorial Functions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Combinatorial Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_47.html#Elementary-Functions" rel="up" title="Elementary Functions">
<link href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" rel="next" title="Root Exponential and Logarithmic Functions">
<link href="maxima_49.html#Functions-for-Complex-Numbers" rel="previous" title="Functions for Complex Numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Combinatorial-Functions"></a>
<div class="header">
<p>
Next: <a href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" accesskey="n" rel="next">Root Exponential and Logarithmic Functions</a>, Previous: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="p" rel="previous">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Combinatorial-Functions-1"></a>
<h3 class="section">10.3 Combinatorial Functions</h3>
<a name="g_t_0021_0021"></a><a name="Item_003a-MathFunctions_002fdeffn_002f_0021_0021"></a><dl>
<dt><a name="index-_0021_0021"></a>Operator: <strong>!!</strong></dt>
<dd><a name="index-Double-factorial"></a>
<p>The double factorial operator.
</p>
<p>For an integer, float, or rational number <code>n</code>, <code>n!!</code> evaluates to the
product <code>n (n-2) (n-4) (n-6) ... (n - 2 (k-1))</code> where <code>k</code> is equal to
<code>entier (n/2)</code>, that is, the largest integer less than or equal to
<code>n/2</code>. Note that this definition does not coincide with other published
definitions for arguments which are not integers.
</p>
<p>For an even (or odd) integer <code>n</code>, <code>n!!</code> evaluates to the product of
all the consecutive even (or odd) integers from 2 (or 1) through <code>n</code>
inclusive.
</p>
<p>For an argument <code>n</code> which is not an integer, float, or rational, <code>n!!</code>
yields a noun form <code>genfact (n, n/2, 2)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·</div></dd></dl>
<a name="binomial"></a><a name="Item_003a-MathFunctions_002fdeffn_002fbinomial"></a><dl>
<dt><a name="index-binomial"></a>Function: <strong>binomial</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd>
<p>The binomial coefficient <code><var>x</var>!/(<var>y</var>! (<var>x</var> - <var>y</var>)!)</code>.
If <var>x</var> and <var>y</var> are integers, then the numerical value of the binomial
coefficient is computed. If <var>y</var>, or <var>x - y</var>, is an integer, the
binomial coefficient is expressed as a polynomial.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) binomial (11, 7);
(%o1) 330
</pre><pre class="example">(%i2) 11! / 7! / (11 - 7)!;
(%o2) 330
</pre><pre class="example">(%i3) binomial (x, 7);
(x - 6) (x - 5) (x - 4) (x - 3) (x - 2) (x - 1) x
(%o3) -------------------------------------------------
5040
</pre><pre class="example">(%i4) binomial (x + 7, x);
(x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6) (x + 7)
(%o4) -------------------------------------------------------
5040
</pre><pre class="example">(%i5) binomial (11, y);
(%o5) binomial(11, y)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Number-theory">Number theory</a>
·</div></dd></dl>
<a name="factcomb"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffactcomb"></a><dl>
<dt><a name="index-factcomb"></a>Function: <strong>factcomb</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Tries to combine the coefficients of factorials in <var>expr</var>
with the factorials themselves by converting, for example, <code>(n + 1)*n!</code>
into <code>(n + 1)!</code>.
</p>
<p><code><a href="#sumsplitfact">sumsplitfact</a></code> if set to <code>false</code> will cause <code><a href="#minfactorial">minfactorial</a></code> to be
applied after a <code>factcomb</code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) sumsplitfact;
(%o1) true
</pre><pre class="example">(%i2) (n + 1)*(n + 1)*n!;
2
(%o2) (n + 1) n!
</pre><pre class="example">(%i3) factcomb (%);
(%o3) (n + 2)! - (n + 1)!
</pre><pre class="example">(%i4) sumsplitfact: not sumsplitfact;
(%o4) false
</pre><pre class="example">(%i5) (n + 1)*(n + 1)*n!;
2
(%o5) (n + 1) n!
</pre><pre class="example">(%i6) factcomb (%);
(%o6) n (n + 1)! + (n + 1)!
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·</div></dd></dl>
<a name="g_t_0021"></a><a name="factorial"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffactorial"></a><dl>
<dt><a name="index-factorial"></a>Function: <strong>factorial</strong></dt>
<dd><a name="Item_003a-MathFunctions_002fdeffn_002f_0021"></a></dd><dt><a name="index-_0021"></a>Operator: <strong>!</strong></dt>
<dd>
<p>Represents the factorial function. Maxima treats <code>factorial (<var>x</var>)</code>
the same as <code><var>x</var>!</code>.
</p>
<p>For any complex number <code>x</code>, except for negative integers, <code>x!</code> is
defined as <code>gamma(x+1)</code>.
</p>
<p>For an integer <code>x</code>, <code>x!</code> simplifies to the product of the integers
from 1 to <code>x</code> inclusive. <code>0!</code> simplifies to 1. For a real or complex
number in float or bigfloat precision <code>x</code>, <code>x!</code> simplifies to the
value of <code>gamma (x+1)</code>. For <code>x</code> equal to <code>n/2</code> where <code>n</code> is
an odd integer, <code>x!</code> simplifies to a rational factor times
<code>sqrt (%pi)</code> (since <code>gamma (1/2)</code> is equal to <code>sqrt (%pi)</code>).
</p>
<p>The option variables <code><a href="#factlim">factlim</a></code> and <code><a href="maxima_87.html#gammalim">gammalim</a></code> control the numerical
evaluation of factorials for integer and rational arguments. The functions
<code><a href="#minfactorial">minfactorial</a></code> and <code><a href="#factcomb">factcomb</a></code> simplifies expressions containing
factorials.
</p>
<p>The functions <code><a href="maxima_87.html#gamma">gamma</a></code>, <code><a href="maxima_87.html#bffac">bffac</a></code>, and <code><a href="maxima_87.html#cbffac">cbffac</a></code> are
varieties of the gamma function. <code>bffac</code> and <code>cbffac</code> are called
internally by <code>gamma</code> to evaluate the gamma function for real and complex
numbers in bigfloat precision.
</p>
<p><code><a href="maxima_87.html#makegamma">makegamma</a></code> substitutes <code>gamma</code> for factorials and related functions.
</p>
<p>Maxima knows the derivative of the factorial function and the limits for
specific values like negative integers.
</p>
<p>The option variable <code><a href="#factorial_005fexpand">factorial_expand</a></code> controls the simplification of
expressions like <code>(n+x)!</code>, where <code>n</code> is an integer.
</p>
<p>See also <code><a href="#binomial">binomial</a></code>.
</p>
<p>The factorial of an integer is simplified to an exact number unless the operand
is greater than <code>factlim</code>. The factorial for real and complex numbers is
evaluated in float or bigfloat precision.
</p>
<div class="example">
<pre class="example">(%i1) factlim : 10;
(%o1) 10
</pre><pre class="example">(%i2) [0!, (7/2)!, 8!, 20!];
105 sqrt(%pi)
(%o2) [1, -------------, 40320, 20!]
16
</pre><pre class="example">(%i3) [4,77!, (1.0+%i)!];
(%o3) [4, 77!, 0.3430658398165453 %i + 0.6529654964201667]
</pre><pre class="example">(%i4) [2.86b0!, (1.0b0+%i)!];
(%o4) [5.046635586910012b0, 3.430658398165454b-1 %i
+ 6.529654964201667b-1]
</pre></div>
<p>The factorial of a known constant, or general expression is not simplified.
Even so it may be possible to simplify the factorial after evaluating the
operand.
</p>
<div class="example">
<pre class="example">(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1) [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
</pre><pre class="example">(%i2) ev (%, numer, %enumer);
(%o2) [0.3430658398165453 %i + 0.6529654964201667,
7.188082728976031, 4.260820476357003, 1.227580202486819]
</pre></div>
<p>Factorials are simplified, not evaluated.
Thus <code>x!</code> may be replaced even in a quoted expression.
</p>
<div class="example">
<pre class="example">(%i1) '([0!, (7/2)!, 4.77!, 8!, 20!]);
105 sqrt(%pi)
(%o1) [1, -------------, 81.44668037931197, 40320,
16
2432902008176640000]
</pre></div>
<p>Maxima knows the derivative of the factorial function.
</p>
<div class="example">
<pre class="example">(%i1) diff(x!,x);
(%o1) x! psi (x + 1)
0
</pre></div>
<p>The option variable <code>factorial_expand</code> controls expansion and
simplification of expressions with the factorial function.
</p>
<div class="example">
<pre class="example">(%i1) (n+1)!/n!,factorial_expand:true;
(%o1) n + 1
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·<a href="maxima_424.html#Category_003a-Operators">Operators</a>
·</div></dd></dl>
<a name="factlim"></a><a name="Item_003a-MathFunctions_002fdefvr_002ffactlim"></a><dl>
<dt><a name="index-factlim"></a>Option variable: <strong>factlim</strong></dt>
<dd><p>Default value: 100000
</p>
<p><code>factlim</code> specifies the highest factorial which is
automatically expanded. If it is -1 then all integers are expanded.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·</div></dd></dl>
<a name="factorial_005fexpand"></a><a name="Item_003a-MathFunctions_002fdefvr_002ffactorial_005fexpand"></a><dl>
<dt><a name="index-factorial_005fexpand"></a>Option variable: <strong>factorial_expand</strong></dt>
<dd><p>Default value: false
</p>
<p>The option variable <code>factorial_expand</code> controls the simplification of
expressions like <code>(x+n)!</code>, where <code>n</code> is an integer.
See <code><a href="#factorial">factorial</a></code> for an example.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·</div></dd></dl>
<a name="genfact"></a><a name="Item_003a-MathFunctions_002fdeffn_002fgenfact"></a><dl>
<dt><a name="index-genfact"></a>Function: <strong>genfact</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dd>
<p>Returns the generalized factorial, defined as
<code>x (x-z) (x - 2 z) ... (x - (y - 1) z)</code>. Thus, when <var>x</var> is an integer,
<code>genfact (x, x, 1) = x!</code> and <code>genfact (x, x/2, 2) = x!!</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·</div></dd></dl>
<a name="minfactorial"></a><a name="Item_003a-MathFunctions_002fdeffn_002fminfactorial"></a><dl>
<dt><a name="index-minfactorial"></a>Function: <strong>minfactorial</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Examines <var>expr</var> for occurrences of two factorials
which differ by an integer.
<code>minfactorial</code> then turns one into a polynomial times the other.
</p>
<div class="example">
<pre class="example">(%i1) n!/(n+2)!;
n!
(%o1) --------
(n + 2)!
(%i2) minfactorial (%);
1
(%o2) ---------------
(n + 1) (n + 2)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Number-theory">Number theory</a>
·</div></dd></dl>
<a name="sumsplitfact"></a><a name="Item_003a-MathFunctions_002fdefvr_002fsumsplitfact"></a><dl>
<dt><a name="index-sumsplitfact"></a>Option variable: <strong>sumsplitfact</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>sumsplitfact</code> is <code>false</code>,
<code><a href="#minfactorial">minfactorial</a></code> is applied after a <code><a href="#factcomb">factcomb</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) sumsplitfact;
(%o1) true
</pre><pre class="example">(%i2) n!/(n+2)!;
n!
(%o2) --------
(n + 2)!
</pre><pre class="example">(%i3) factcomb(%);
n!
(%o3) --------
(n + 2)!
</pre><pre class="example">(%i4) sumsplitfact: not sumsplitfact ;
(%o4) false
</pre><pre class="example">(%i5) n!/(n+2)!;
n!
(%o5) --------
(n + 2)!
</pre><pre class="example">(%i6) factcomb(%);
1
(%o6) ---------------
(n + 1) (n + 2)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="Item_003a-MathFunctions_002fnode_002fRoot-Exponential-and-Logarithmic-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" accesskey="n" rel="next">Root Exponential and Logarithmic Functions</a>, Previous: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="p" rel="previous">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|