File: maxima_50.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (378 lines) | stat: -rw-r--r-- 18,417 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Combinatorial Functions</title>

<meta name="description" content="Maxima 5.47.0 Manual: Combinatorial Functions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Combinatorial Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_47.html#Elementary-Functions" rel="up" title="Elementary Functions">
<link href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" rel="next" title="Root Exponential and Logarithmic Functions">
<link href="maxima_49.html#Functions-for-Complex-Numbers" rel="previous" title="Functions for Complex Numbers">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Combinatorial-Functions"></a>
<div class="header">
<p>
Next: <a href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" accesskey="n" rel="next">Root Exponential and Logarithmic Functions</a>, Previous: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="p" rel="previous">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Combinatorial-Functions-1"></a>
<h3 class="section">10.3 Combinatorial Functions</h3>

<a name="g_t_0021_0021"></a><a name="Item_003a-MathFunctions_002fdeffn_002f_0021_0021"></a><dl>
<dt><a name="index-_0021_0021"></a>Operator: <strong>!!</strong></dt>
<dd><a name="index-Double-factorial"></a>

<p>The double factorial operator.
</p>
<p>For an integer, float, or rational number <code>n</code>, <code>n!!</code> evaluates to the
product <code>n (n-2) (n-4) (n-6) ... (n - 2 (k-1))</code> where <code>k</code> is equal to
<code>entier (n/2)</code>, that is, the largest integer less than or equal to
<code>n/2</code>.  Note that this definition does not coincide with other published
definitions for arguments which are not integers.
</p>
<p>For an even (or odd) integer <code>n</code>, <code>n!!</code> evaluates to the product of
all the consecutive even (or odd) integers from 2 (or 1) through <code>n</code>
inclusive.
</p>
<p>For an argument <code>n</code> which is not an integer, float, or rational, <code>n!!</code>
yields a noun form <code>genfact (n, n/2, 2)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;<a href="maxima_424.html#Category_003a-Operators">Operators</a>
&middot;</div></dd></dl>

<a name="binomial"></a><a name="Item_003a-MathFunctions_002fdeffn_002fbinomial"></a><dl>
<dt><a name="index-binomial"></a>Function: <strong>binomial</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd>
<p>The binomial coefficient <code><var>x</var>!/(<var>y</var>! (<var>x</var> - <var>y</var>)!)</code>.
If <var>x</var> and <var>y</var> are integers, then the numerical value of the binomial
coefficient is computed.  If <var>y</var>, or <var>x - y</var>, is an integer, the
binomial coefficient is expressed as a polynomial.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) binomial (11, 7);
(%o1)                          330
</pre><pre class="example">(%i2) 11! / 7! / (11 - 7)!;
(%o2)                          330
</pre><pre class="example">(%i3) binomial (x, 7);
        (x - 6) (x - 5) (x - 4) (x - 3) (x - 2) (x - 1) x
(%o3)   -------------------------------------------------
                              5040
</pre><pre class="example">(%i4) binomial (x + 7, x);
      (x + 1) (x + 2) (x + 3) (x + 4) (x + 5) (x + 6) (x + 7)
(%o4) -------------------------------------------------------
                               5040
</pre><pre class="example">(%i5) binomial (11, y);
(%o5)                    binomial(11, y)
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Number-theory">Number theory</a>
&middot;</div></dd></dl>

<a name="factcomb"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffactcomb"></a><dl>
<dt><a name="index-factcomb"></a>Function: <strong>factcomb</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Tries to combine the coefficients of factorials in <var>expr</var>
with the factorials themselves by converting, for example, <code>(n + 1)*n!</code>
into <code>(n + 1)!</code>.
</p>
<p><code><a href="#sumsplitfact">sumsplitfact</a></code> if set to <code>false</code> will cause <code><a href="#minfactorial">minfactorial</a></code> to be
applied after a <code>factcomb</code>.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) sumsplitfact;
(%o1)                         true
</pre><pre class="example">(%i2) (n + 1)*(n + 1)*n!;
                                  2
(%o2)                      (n + 1)  n!
</pre><pre class="example">(%i3) factcomb (%);
(%o3)                  (n + 2)! - (n + 1)!
</pre><pre class="example">(%i4) sumsplitfact: not sumsplitfact;
(%o4)                         false
</pre><pre class="example">(%i5) (n + 1)*(n + 1)*n!;
                                  2
(%o5)                      (n + 1)  n!
</pre><pre class="example">(%i6) factcomb (%);
(%o6)                 n (n + 1)! + (n + 1)!
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;</div></dd></dl>

<a name="g_t_0021"></a><a name="factorial"></a><a name="Item_003a-MathFunctions_002fdeffn_002ffactorial"></a><dl>
<dt><a name="index-factorial"></a>Function: <strong>factorial</strong></dt>
<dd><a name="Item_003a-MathFunctions_002fdeffn_002f_0021"></a></dd><dt><a name="index-_0021"></a>Operator: <strong>!</strong></dt>
<dd>
<p>Represents the factorial function.  Maxima treats <code>factorial (<var>x</var>)</code>
the same as <code><var>x</var>!</code>.
</p>
<p>For any complex number <code>x</code>, except for negative integers, <code>x!</code> is 
defined as <code>gamma(x+1)</code>.
</p>
<p>For an integer <code>x</code>, <code>x!</code> simplifies to the product of the integers 
from 1 to <code>x</code> inclusive.  <code>0!</code> simplifies to 1.  For a real or complex 
number in float or bigfloat precision <code>x</code>, <code>x!</code> simplifies to the 
value of <code>gamma (x+1)</code>.  For <code>x</code> equal to <code>n/2</code> where <code>n</code> is 
an odd integer, <code>x!</code> simplifies to a rational factor times 
<code>sqrt (%pi)</code> (since <code>gamma (1/2)</code> is equal to <code>sqrt (%pi)</code>).
</p>
<p>The option variables <code><a href="#factlim">factlim</a></code> and <code><a href="maxima_87.html#gammalim">gammalim</a></code> control the numerical
evaluation of factorials for integer and rational arguments.  The functions 
<code><a href="#minfactorial">minfactorial</a></code> and <code><a href="#factcomb">factcomb</a></code> simplifies expressions containing
factorials.
</p>
<p>The functions <code><a href="maxima_87.html#gamma">gamma</a></code>, <code><a href="maxima_87.html#bffac">bffac</a></code>, and <code><a href="maxima_87.html#cbffac">cbffac</a></code> are
varieties of the gamma function.  <code>bffac</code> and <code>cbffac</code> are called
internally by <code>gamma</code> to evaluate the gamma function for real and complex
numbers in bigfloat precision.
</p>
<p><code><a href="maxima_87.html#makegamma">makegamma</a></code> substitutes <code>gamma</code> for factorials and related functions.
</p>
<p>Maxima knows the derivative of the factorial function and the limits for 
specific values like negative integers.
</p>
<p>The option variable <code><a href="#factorial_005fexpand">factorial_expand</a></code> controls the simplification of
expressions like <code>(n+x)!</code>, where <code>n</code> is an integer.
</p>
<p>See also <code><a href="#binomial">binomial</a></code>.
</p>
<p>The factorial of an integer is simplified to an exact number unless the operand 
is greater than <code>factlim</code>.  The factorial for real and complex numbers is 
evaluated in float or bigfloat precision.
</p>
<div class="example">
<pre class="example">(%i1) factlim : 10;
(%o1)                          10
</pre><pre class="example">(%i2) [0!, (7/2)!, 8!, 20!];
                     105 sqrt(%pi)
(%o2)            [1, -------------, 40320, 20!]
                          16
</pre><pre class="example">(%i3) [4,77!, (1.0+%i)!];
(%o3) [4, 77!, 0.3430658398165453 %i + 0.6529654964201667]
</pre><pre class="example">(%i4) [2.86b0!, (1.0b0+%i)!];
(%o4) [5.046635586910012b0, 3.430658398165454b-1 %i
                                          + 6.529654964201667b-1]
</pre></div>

<p>The factorial of a known constant, or general expression is not simplified.
Even so it may be possible to simplify the factorial after evaluating the
operand.
</p>
<div class="example">
<pre class="example">(%i1) [(%i + 1)!, %pi!, %e!, (cos(1) + sin(1))!];
(%o1)      [(%i + 1)!, %pi!, %e!, (sin(1) + cos(1))!]
</pre><pre class="example">(%i2) ev (%, numer, %enumer);
(%o2) [0.3430658398165453 %i + 0.6529654964201667, 
         7.188082728976031, 4.260820476357003, 1.227580202486819]
</pre></div>



<p>Factorials are simplified, not evaluated.
Thus <code>x!</code> may be replaced even in a quoted expression.
</p>
<div class="example">
<pre class="example">(%i1) '([0!, (7/2)!, 4.77!, 8!, 20!]);
          105 sqrt(%pi)
(%o1) [1, -------------, 81.44668037931197, 40320, 
               16
                                             2432902008176640000]
</pre></div>

<p>Maxima knows the derivative of the factorial function.
</p>
<div class="example">
<pre class="example">(%i1) diff(x!,x);
(%o1)                    x! psi (x + 1)
                               0
</pre></div>

<p>The option variable <code>factorial_expand</code> controls expansion and 
simplification of expressions with the factorial function.
</p>
<div class="example">
<pre class="example">(%i1) (n+1)!/n!,factorial_expand:true;
(%o1)                         n + 1
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;<a href="maxima_424.html#Category_003a-Operators">Operators</a>
&middot;</div></dd></dl>


<a name="factlim"></a><a name="Item_003a-MathFunctions_002fdefvr_002ffactlim"></a><dl>
<dt><a name="index-factlim"></a>Option variable: <strong>factlim</strong></dt>
<dd><p>Default value: 100000
</p>
<p><code>factlim</code> specifies the highest factorial which is
automatically expanded.  If it is -1 then all integers are expanded.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;</div></dd></dl>

<a name="factorial_005fexpand"></a><a name="Item_003a-MathFunctions_002fdefvr_002ffactorial_005fexpand"></a><dl>
<dt><a name="index-factorial_005fexpand"></a>Option variable: <strong>factorial_expand</strong></dt>
<dd><p>Default value: false
</p>
<p>The option variable <code>factorial_expand</code> controls the simplification of 
expressions like <code>(x+n)!</code>, where <code>n</code> is an integer.
See <code><a href="#factorial">factorial</a></code> for an example.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;</div></dd></dl>


<a name="genfact"></a><a name="Item_003a-MathFunctions_002fdeffn_002fgenfact"></a><dl>
<dt><a name="index-genfact"></a>Function: <strong>genfact</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dd>
<p>Returns the generalized factorial, defined as
<code>x (x-z) (x - 2 z) ... (x - (y - 1) z)</code>.  Thus, when <var>x</var> is an integer,
<code>genfact (x, x, 1) = x!</code> and <code>genfact (x, x/2, 2) = x!!</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;</div></dd></dl>

<a name="minfactorial"></a><a name="Item_003a-MathFunctions_002fdeffn_002fminfactorial"></a><dl>
<dt><a name="index-minfactorial"></a>Function: <strong>minfactorial</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Examines <var>expr</var> for occurrences of two factorials
which differ by an integer.
<code>minfactorial</code> then turns one into a polynomial times the other.
</p>

<div class="example">
<pre class="example">(%i1) n!/(n+2)!;
                               n!
(%o1)                       --------
                            (n + 2)!
(%i2) minfactorial (%);
                                1
(%o2)                    ---------------
                         (n + 1) (n + 2)
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Number-theory">Number theory</a>
&middot;</div></dd></dl>

<a name="sumsplitfact"></a><a name="Item_003a-MathFunctions_002fdefvr_002fsumsplitfact"></a><dl>
<dt><a name="index-sumsplitfact"></a>Option variable: <strong>sumsplitfact</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>sumsplitfact</code> is <code>false</code>,
<code><a href="#minfactorial">minfactorial</a></code> is applied after a <code><a href="#factcomb">factcomb</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) sumsplitfact;
(%o1)                         true
</pre><pre class="example">(%i2) n!/(n+2)!;
                               n!
(%o2)                       --------
                            (n + 2)!
</pre><pre class="example">(%i3) factcomb(%);
                               n!
(%o3)                       --------
                            (n + 2)!
</pre><pre class="example">(%i4) sumsplitfact: not sumsplitfact ;
(%o4)                         false
</pre><pre class="example">(%i5) n!/(n+2)!;
                               n!
(%o5)                       --------
                            (n + 2)!
</pre><pre class="example">(%i6) factcomb(%);
                                1
(%o6)                    ---------------
                         (n + 1) (n + 2)
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Gamma-and-factorial-functions">Gamma and factorial functions</a>
&middot;<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
&middot;</div></dd></dl>

<a name="Item_003a-MathFunctions_002fnode_002fRoot-Exponential-and-Logarithmic-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_51.html#Root-Exponential-and-Logarithmic-Functions" accesskey="n" rel="next">Root Exponential and Logarithmic Functions</a>, Previous: <a href="maxima_49.html#Functions-for-Complex-Numbers" accesskey="p" rel="previous">Functions for Complex Numbers</a>, Up: <a href="maxima_47.html#Elementary-Functions" accesskey="u" rel="up">Elementary Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>