1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Options Controlling Simplification</title>
<meta name="description" content="Maxima 5.47.0 Manual: Options Controlling Simplification">
<meta name="keywords" content="Maxima 5.47.0 Manual: Options Controlling Simplification">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_54.html#Functions-and-Variables-for-Trigonometric" rel="up" title="Functions and Variables for Trigonometric">
<link href="maxima_57.html#Explicit-Simplifications-Using-Identities" rel="next" title="Explicit Simplifications Using Identities">
<link href="maxima_55.html#Trigonometric-and-Hyperbolic-Functions" rel="previous" title="Trigonometric and Hyperbolic Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Options-Controlling-Simplification"></a>
<div class="header">
<p>
Next: <a href="maxima_57.html#Explicit-Simplifications-Using-Identities" accesskey="n" rel="next">Explicit Simplifications Using Identities</a>, Previous: <a href="maxima_55.html#Trigonometric-and-Hyperbolic-Functions" accesskey="p" rel="previous">Trigonometric and Hyperbolic Functions</a>, Up: <a href="maxima_54.html#Functions-and-Variables-for-Trigonometric" accesskey="u" rel="up">Functions and Variables for Trigonometric</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Options-Controlling-Simplification-1"></a>
<h4 class="subsubsection">10.5.2.2 Options Controlling Simplification</h4>
<a name="g_t_0025piargs"></a><a name="Item_003a-MathFunctions_002fdefvr_002f_0025piargs"></a><dl>
<dt><a name="index-_0025piargs"></a>Option variable: <strong>%piargs</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>%piargs</code> is <code>true</code>,
trigonometric functions are simplified to algebraic constants
when the argument is an integer multiple
of
\(\pi,\)<!-- /@w -->
\(\pi/2,\)<!-- /@w -->
\(\pi/4,\)<!-- /@w --> or
\(\pi/6.\)</p>
<p>Maxima knows some identities which can be applied when
\(\pi\), etc.,
are multiplied by an integer variable (that is, a symbol declared to be
integer).
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) %piargs : false$
</pre><pre class="example">(%i2) [sin (%pi), sin (%pi/2), sin (%pi/3)];
%pi %pi
(%o2) [sin(%pi), sin(---), sin(---)]
2 3
</pre><pre class="example">(%i3) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
%pi %pi %pi
(%o3) [sin(---), sin(---), sin(---)]
4 5 6
</pre><pre class="example">(%i4) %piargs : true$
</pre><pre class="example">(%i5) [sin (%pi), sin (%pi/2), sin (%pi/3)];
sqrt(3)
(%o5) [0, 1, -------]
2
</pre><pre class="example">(%i6) [sin (%pi/4), sin (%pi/5), sin (%pi/6)];
1 %pi 1
(%o6) [-------, sin(---), -]
sqrt(2) 5 2
</pre><pre class="example">(%i7) [cos (%pi/3), cos (10*%pi/3), tan (10*%pi/3),
cos (sqrt(2)*%pi/3)];
1 1 sqrt(2) %pi
(%o7) [-, - -, sqrt(3), cos(-----------)]
2 2 3
</pre></div>
<p>Some identities are applied when
\(\pi\) and
\(\pi/2\) are
multiplied by an integer variable.
</p>
<div class="example">
<pre class="example">(%i1) declare (n, integer, m, even)$
</pre><pre class="example">(%i2) [sin (%pi * n), cos (%pi * m), sin (%pi/2 * m),
cos (%pi/2 * m)];
m/2
(%o2) [0, 1, 0, (- 1) ]
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="g_t_0025iargs"></a><a name="Item_003a-MathFunctions_002fdefvr_002f_0025iargs"></a><dl>
<dt><a name="index-_0025iargs"></a>Option variable: <strong>%iargs</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>%iargs</code> is <code>true</code>,
trigonometric functions are simplified to hyperbolic functions
when the argument is apparently a multiple of the imaginary
unit
\(i.\)</p>
<p>Even when the argument is demonstrably real, the simplification is applied;
Maxima considers only whether the argument is a literal multiple
of
\(i.\)</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) %iargs : false$
</pre><pre class="example">(%i2) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o2) [sin(%i x), cos(%i x), tan(%i x)]
</pre><pre class="example">(%i3) %iargs : true$
</pre><pre class="example">(%i4) [sin (%i * x), cos (%i * x), tan (%i * x)];
(%o4) [%i sinh(x), cosh(x), %i tanh(x)]
</pre></div>
<p>Even when the argument is demonstrably real, the simplification is applied.
</p>
<div class="example">
<pre class="example">(%i1) declare (x, imaginary)$
</pre><pre class="example">(%i2) [featurep (x, imaginary), featurep (x, real)];
(%o2) [true, false]
</pre><pre class="example">(%i3) sin (%i * x);
(%o3) %i sinh(x)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Hyperbolic-functions">Hyperbolic functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="halfangles"></a><a name="Item_003a-MathFunctions_002fdefvr_002fhalfangles"></a><dl>
<dt><a name="index-halfangles"></a>Option variable: <strong>halfangles</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>halfangles</code> is <code>true</code>, trigonometric functions of arguments
<code><var>expr</var>/2</code> are simplified to functions of <var>expr</var>.
</p>
<p>For a real argument <em>x</em> in the interval
<!-- /@w -->
\(0 \le x < 2\pi,\)<!-- /@w -->
\(\sin{x\over 2}\) simplifies to a simple formula:
$$
{\sqrt{1-\cos x}\over\sqrt{2}}
$$</p>
<p>A complicated factor is needed to make this formula correct for all complex
arguments <em>z = x+iy</em>:
$$
(-1)^{\lfloor{x/(2\pi)}\rfloor}
\left[1-\rm{unit\_step}(-y)
\left(1+(-1)^{\lfloor{x/(2\pi)}\rfloor - \lceil{x/(2\pi)}\rceil}\right)\right]
$$</p>
<p>Maxima knows this factor and similar factors for the functions <code>sin</code>,
<code>cos</code>, <code>sinh</code>, and <code>cosh</code>. For special values of the argument
<em>z</em> these factors simplify accordingly.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) halfangles : false$
</pre><pre class="example">(%i2) sin (x / 2);
x
(%o2) sin(-)
2
</pre><pre class="example">(%i3) halfangles : true$
</pre><pre class="example">(%i4) sin (x / 2);
x
floor(-----)
2 %pi
(- 1) sqrt(1 - cos(x))
(%o4) ----------------------------------
sqrt(2)
</pre><pre class="example">(%i5) assume(x>0, x<2*%pi)$
</pre><pre class="example">(%i6) sin(x / 2);
sqrt(1 - cos(x))
(%o6) ----------------
sqrt(2)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="trigsign"></a><a name="Item_003a-MathFunctions_002fdefvr_002ftrigsign"></a><dl>
<dt><a name="index-trigsign"></a>Option variable: <strong>trigsign</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>trigsign</code> is <code>true</code>, it permits simplification of negative
arguments to trigonometric functions. E.g.,
\(\sin(-x)\) will
become
\(-\sin x\) only if <code>trigsign</code> is <code>true</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Trigonometric-functions">Trigonometric functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·</div></dd></dl>
<a name="Item_003a-MathFunctions_002fnode_002fExplicit-Simplifications-Using-Identities"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_57.html#Explicit-Simplifications-Using-Identities" accesskey="n" rel="next">Explicit Simplifications Using Identities</a>, Previous: <a href="maxima_55.html#Trigonometric-and-Hyperbolic-Functions" accesskey="p" rel="previous">Trigonometric and Hyperbolic Functions</a>, Up: <a href="maxima_54.html#Functions-and-Variables-for-Trigonometric" accesskey="u" rel="up">Functions and Variables for Trigonometric</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|