File: maxima_64.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (352 lines) | stat: -rw-r--r-- 16,026 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for Predicates</title>

<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for Predicates">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for Predicates">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_60.html#Maxima_0027s-Database" rel="up" title="Maxima's Database">
<link href="maxima_65.html#Plotting" rel="next" title="Plotting">
<link href="maxima_63.html#Functions-and-Variables-for-Facts" rel="previous" title="Functions and Variables for Facts">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Predicates"></a>
<div class="header">
<p>
Previous: <a href="maxima_63.html#Functions-and-Variables-for-Facts" accesskey="p" rel="previous">Functions and Variables for Facts</a>, Up: <a href="maxima_60.html#Maxima_0027s-Database" accesskey="u" rel="up">Maxima's Database</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Predicates-1"></a>
<h3 class="section">11.4 Functions and Variables for Predicates</h3>

<a name="charfun"></a><a name="Item_003a-Database_002fdeffn_002fcharfun"></a><dl>
<dt><a name="index-charfun"></a>Function: <strong>charfun</strong> <em>(<var>p</var>)</em></dt>
<dd>
<p>Return 0 when the predicate <var>p</var> evaluates to <code>false</code>; return 1 when
the predicate evaluates to <code>true</code>.  When the predicate evaluates to
something other than <code>true</code> or <code>false</code> (unknown),  return a noun form.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) charfun (x &lt; 1);
(%o1)                    charfun(x &lt; 1)
(%i2) subst (x = -1, %);
(%o2)                           1
(%i3) e : charfun ('&quot;and&quot; (-1 &lt; x, x &lt; 1))$
(%i4) [subst (x = -1, e), subst (x = 0, e), subst (x = 1, e)];
(%o4)                       [0, 1, 0]
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Mathematical-functions">Mathematical functions</a>
&middot;</div></dd></dl>

<a name="compare"></a><a name="Item_003a-Database_002fdeffn_002fcompare"></a><dl>
<dt><a name="index-compare"></a>Function: <strong>compare</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd>
<p>Return a comparison operator <var>op</var> (<code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, <code>&gt;=</code>,
<code>=</code>, or <code>#</code>) such that <code>is (<var>x</var> <var>op</var> <var>y</var>)</code> evaluates
to <code>true</code>; when either <var>x</var> or <var>y</var> depends on <code>%i</code> and
<code><var>x</var> # <var>y</var></code>, return <code>notcomparable</code>; when there is no such
operator or Maxima isn&rsquo;t able to determine the operator, return <code>unknown</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) compare (1, 2);
(%o1)                           &lt;
(%i2) compare (1, x);
(%o2)                        unknown
(%i3) compare (%i, %i);
(%o3)                           =
(%i4) compare (%i, %i + 1);
(%o4)                     notcomparable
(%i5) compare (1/x, 0);
(%o5)                           #
(%i6) compare (x, abs(x));
(%o6)                          &lt;=
</pre></div>

<p>The function <code>compare</code> doesn&rsquo;t try to determine whether the real domains of
its arguments are nonempty; thus
</p>
<div class="example">
<pre class="example">(%i1) compare (acos (x^2 + 1), acos (x^2 + 1) + 1);
(%o1)                           &lt;
</pre></div>

<p>The real domain of <code>acos (x^2 + 1)</code> is empty.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Declarations-and-inferences">Declarations and inferences</a>
&middot;</div></dd></dl>

<a name="equal"></a><a name="Item_003a-Database_002fdeffn_002fequal"></a><dl>
<dt><a name="index-equal"></a>Function: <strong>equal</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Represents equivalence, that is, equal value.
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
The function <code><a href="maxima_63.html#is">is</a></code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code> returns <code>true</code> (or <code>false</code>) if
and only if <var>a</var> and <var>b</var> are equal (or not equal) for all possible
values of their variables, as determined by evaluating
<code>ratsimp(<var>a</var> - <var>b</var>)</code>; if <code><a href="maxima_80.html#ratsimp">ratsimp</a></code> returns 0, the two
expressions are considered equivalent.  Two expressions may be equivalent even
if they are not syntactically equal (i.e., identical).
</p>
<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>, the
result is governed by the global flag <code><a href="maxima_175.html#prederror">prederror</a></code>.  When <code>prederror</code>
is <code>true</code>, <code>is</code> complains with an error message.  Otherwise, <code>is</code>
returns <code>unknown</code>.
</p>
<p>In addition to <code>is</code>, some other operators evaluate <code>equal</code> and
<code>notequal</code> to <code>true</code> or <code>false</code>, namely <code><a href="maxima_175.html#if">if</a></code>,<!-- /@w -->
<code><a href="maxima_38.html#and">and</a></code>, <code><a href="maxima_38.html#or">or</a></code>, and <code><a href="maxima_38.html#not">not</a></code>.
</p>

<p>The negation of <code>equal</code> is <code><a href="#notequal">notequal</a></code>.
</p>
<p>Examples:
</p>
<p>By itself, <code>equal</code> does not evaluate or simplify.
</p>
<div class="example">
<pre class="example">(%i1) equal (x^2 - 1, (x + 1) * (x - 1));
                        2
(%o1)            equal(x  - 1, (x - 1) (x + 1))
(%i2) equal (x, x + 1);
(%o2)                    equal(x, x + 1)
(%i3) equal (x, y);
(%o3)                      equal(x, y)
</pre></div>

<p>The function <code>is</code> attempts to evaluate <code>equal</code> to a Boolean value.
<code>is(equal(<var>a</var>, <var>b</var>))</code> returns <code>true</code> when
<code>ratsimp(<var>a</var> - <var>b</var>)</code> returns 0.  Two expressions may be equivalent
even if they are not syntactically equal (i.e., identical).
</p>
<div class="example">
<pre class="example">(%i1) ratsimp (x^2 - 1 - (x + 1) * (x - 1));
(%o1)                           0
(%i2) is (equal (x^2 - 1, (x + 1) * (x - 1)));
(%o2)                         true
(%i3) is (x^2 - 1 = (x + 1) * (x - 1));
(%o3)                         false
(%i4) ratsimp (x - (x + 1));
(%o4)                          - 1
(%i5) is (equal (x, x + 1));
(%o5)                         false
(%i6) is (x = x + 1);
(%o6)                         false
(%i7) ratsimp (x - y);
(%o7)                         x - y
(%i8) is (equal (x, y));
(%o8)                        unknown
(%i9) is (x = y);
(%o9)                         false
</pre></div>

<p>When <code>is</code> fails to reduce <code>equal</code> to <code>true</code> or <code>false</code>,
the result is governed by the global flag <code>prederror</code>.
</p>
<div class="example">
<pre class="example">(%i1) [aa : x^2 + 2*x + 1, bb : x^2 - 2*x - 1];
                    2             2
(%o1)             [x  + 2 x + 1, x  - 2 x - 1]
(%i2) ratsimp (aa - bb);
(%o2)                        4 x + 2
(%i3) prederror : true;
(%o3)                         true
(%i4) is (equal (aa, bb));
Maxima was unable to evaluate the predicate:
       2             2
equal(x  + 2 x + 1, x  - 2 x - 1)
 -- an error.  Quitting.  To debug this try debugmode(true);
(%i5) prederror : false;
(%o5)                         false
(%i6) is (equal (aa, bb));
(%o6)                        unknown
</pre></div>

<p>Some operators evaluate <code>equal</code> and <code>notequal</code> to <code>true</code> or
<code>false</code>.
</p>
<div class="example">
<pre class="example">(%i1) if equal (y, y - 1) then FOO else BAR;
(%o1)                          BAR
(%i2) eq_1 : equal (x, x + 1);
(%o2)                    equal(x, x + 1)
(%i3) eq_2 : equal (y^2 + 2*y + 1, (y + 1)^2);
                         2                   2
(%o3)             equal(y  + 2 y + 1, (y + 1) )
(%i4) [eq_1 and eq_2, eq_1 or eq_2, not eq_1];
(%o4)                  [false, true, true]
</pre></div>

<p>Because <code>not <var>expr</var></code> causes evaluation of <var>expr</var>,
<code>not equal(<var>a</var>, <var>b</var>)</code> is equivalent to
<code>is(notequal(<var>a</var>, <var>b</var>))</code>.
</p>
<div class="example">
<pre class="example">(%i1) [notequal (2*z, 2*z - 1), not equal (2*z, 2*z - 1)];
(%o1)            [notequal(2 z, 2 z - 1), true]
(%i2) is (notequal (2*z, 2*z - 1));
(%o2)                         true
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
&middot;</div></dd></dl>

<a name="notequal"></a><a name="Item_003a-Database_002fdeffn_002fnotequal"></a><dl>
<dt><a name="index-notequal"></a>Function: <strong>notequal</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Represents the negation of <code>equal(<var>a</var>, <var>b</var>)</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) equal (a, b);
(%o1)                      equal(a, b)
(%i2) maybe (equal (a, b));
(%o2)                        unknown
(%i3) notequal (a, b);
(%o3)                    notequal(a, b)
(%i4) not equal (a, b);
(%o4)                    notequal(a, b)
(%i5) maybe (notequal (a, b));
(%o5)                        unknown
(%i6) assume (a &gt; b);
(%o6)                        [a &gt; b]
(%i7) equal (a, b);
(%o7)                      equal(a, b)
(%i8) maybe (equal (a, b));
(%o8)                         false
(%i9) notequal (a, b);
(%o9)                    notequal(a, b)
(%i10) maybe (notequal (a, b));
(%o10)                        true
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Operators">Operators</a>
&middot;</div></dd></dl>

<a name="unknown"></a><a name="Item_003a-Database_002fdeffn_002funknown"></a><dl>
<dt><a name="index-unknown"></a>Function: <strong>unknown</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Returns <code>true</code> if and only if <var>expr</var> contains an operator or function
not recognized by the Maxima simplifier.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
&middot;<a href="maxima_424.html#Category_003a-Simplification-functions">Simplification functions</a>
&middot;</div></dd></dl>


<a name="zeroequiv"></a><a name="Item_003a-Database_002fdeffn_002fzeroequiv"></a><dl>
<dt><a name="index-zeroequiv"></a>Function: <strong>zeroequiv</strong> <em>(<var>expr</var>, <var>v</var>)</em></dt>
<dd>
<p>Tests whether the expression <var>expr</var> in the variable <var>v</var> is equivalent
to zero, returning <code>true</code>, <code>false</code>, or <code>dontknow</code>.
</p>
<p><code>zeroequiv</code> has these restrictions:
</p>
<ol>
<li> Do not use functions that Maxima does not know how to
differentiate and evaluate.
</li><li> If the expression has poles on the real line, there may be errors
in the result (but this is unlikely to occur).
</li><li> If the expression contains functions which are not solutions to first order
differential equations (e.g. Bessel functions) there may be incorrect results.
</li><li> The algorithm uses evaluation at randomly chosen points for carefully selected
subexpressions.  This is always a somewhat hazardous business, although the
algorithm tries to minimize the potential for error.
</li></ol>

<p>For example <code>zeroequiv (sin(2 * x) - 2 * sin(x) * cos(x), x)</code> returns
<code>true</code> and <code>zeroequiv (%e^x + x, x)</code> returns <code>false</code>.
On the other hand <code>zeroequiv (log(a * b) - log(a) - log(b), a)</code> returns 
<code>dontknow</code> because of the presence of an extra parameter <code>b</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Predicate-functions">Predicate functions</a>
&middot;</div></dd></dl>


<hr>
<div class="header">
<p>
Previous: <a href="maxima_63.html#Functions-and-Variables-for-Facts" accesskey="p" rel="previous">Functions and Variables for Facts</a>, Up: <a href="maxima_60.html#Maxima_0027s-Database" accesskey="u" rel="up">Maxima's Database</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>