1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for algebraic extensions</title>
<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for algebraic extensions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for algebraic extensions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_78.html#Polynomials" rel="up" title="Polynomials">
<link href="maxima_83.html#Special-Functions" rel="next" title="Special Functions">
<link href="maxima_81.html#Introduction-to-algebraic-extensions" rel="previous" title="Introduction to algebraic extensions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-algebraic-extensions"></a>
<div class="header">
<p>
Previous: <a href="maxima_81.html#Introduction-to-algebraic-extensions" accesskey="p" rel="previous">Introduction to algebraic extensions</a>, Up: <a href="maxima_78.html#Polynomials" accesskey="u" rel="up">Polynomials</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-algebraic-extensions-1"></a>
<h3 class="section">14.4 Functions and Variables for algebraic extensions</h3>
<a name="algfac"></a><dl>
<dt><a name="index-algfac"></a>Function: <strong>algfac</strong> <em>(<var>f</var>, <var>p</var>)</em></dt>
<dd>
<p>Returns the factorization of <var>f</var> in the field <em>K[a]</em>. Does the same
as <code>factor(<var>f</var>, <var>p</var>)</code> which in fact calls <code>algfac</code>. One can also
specify the variable <var>a</var> as in <code>algfac(<var>f</var>, <var>p</var>, <var>a</var>)</code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) algfac(x^4 + 1, a^2 - 2);
2 2
(%o1) (x - a x + 1) (x + a x + 1)
(%i2) algfac(x^4 - t*x^2 + 1, a^2 - t - 2, a);
2 2
(%o2) (x - a x + 1) (x + a x + 1)
</pre></div>
<p>In the second example note that <em>a = sqrt(2 + t)</em>.
</p></dd></dl>
<a name="algnorm"></a><dl>
<dt><a name="index-algnorm"></a>Function: <strong>algnorm</strong> <em>(<var>f</var>, <var>p</var>, <var>a</var>)</em></dt>
<dd>
<p>Returns the norm of the polynomial <em>f(a)</em> in the extension
obtained by a root <var>a</var> of polynomial <var>p</var>. The coefficients of
<var>f</var> may depend on other variables.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) algnorm(x*a^2 + y*a + z,a^2 - 2, a);
2 2 2
(%o1)/R/ z + 4 x z - 2 y + 4 x
</pre></div>
<p>The norm is also the resultant of polynomials <var>f</var> and <var>p</var>, and the product
of the differences of the roots of <var>f</var> and <var>p</var>.
</p></dd></dl>
<a name="algtrace"></a><dl>
<dt><a name="index-algtrace"></a>Function: <strong>algtrace</strong> <em>(<var>f</var>, <var>p</var>, <var>a</var>)</em></dt>
<dd>
<p>Returns the trace of the polynomial <em>f(a)</em> in the extension
obtained by a root <var>a</var> of polynomial <var>p</var>. The coefficients of
<var>f</var> may depend on other variables which remain “inert”.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) algtrace(x*a^5 + y*a^3 + z + 1, a^2 + a + 1, a);
(%o1)/R/ 2 z + 2 y - x + 2
</pre></div>
</dd></dl>
<a name="bdiscr"></a><dl>
<dt><a name="index-bdiscr"></a>Function: <strong>bdiscr</strong> <em>(<var>args</var>)</em></dt>
<dd>
<p>Computes the discriminant of a basis <em>x_i</em> in <em>K[a]</em> as
the determinant of the matrix of elements <em>trace(x_i*x_j)</em>.
The args are the elements of the basis followed by the minimal
polynomial.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) bdiscr(1, x, x^2, x^3 - 2);
(%o1)/R/ - 108
(%i2) poly_discriminant(x^3 - 2, x);
(%o2) - 108
</pre></div>
<p>A standard base in an extension of degree n is <em>1, x, ..., x^{n - 1}</em>.
In this case it is known that the discriminant of this base is the discriminant
of the minimal polynomial. This is checked in (%o2) above.
</p>
</dd></dl>
<a name="primelmt"></a><dl>
<dt><a name="index-primelmt"></a>Function: <strong>primelmt</strong> <em>(<var>f_b</var>, <var>p_a</var>, <var>c</var>)</em></dt>
<dd>
<p>Computes a prime element for the extension of <em>K[a]</em> by a root
<var>b</var> of a polynomial <em>f_b(b)</em> whose coefficients may depend on
<var>a</var>. One assumes that <var>f_b</var> is square free. The function returns
an irreducible polynomial, a root of which generates <em>K[a, b]</em>, and
the expression of this primitive element in terms of <var>a</var> and
<var>b</var>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) primelmt(b^2 - a*b - 1, a^2 - 2, c);
4 2
(%o1) [c - 12 c + 9, b + a]
(%i2) solve(b^2 - sqrt(2)*b - 1)[1];
sqrt(6) - sqrt(2)
(%o2) b = - -----------------
2
(%i3) primelmt(b^2 - 3, a^2 - 2, c);
4 2
(%o3) [c - 10 c + 1, b + a]
(%i4) factor(c^4 - 12*c^2 + 9, a^4 - 10*a^2 + 1);
3 2 3 2
(%o4) ((4 c - 3 a - a + 27 a + 5) (4 c - 3 a + a + 27 a - 5)
3 2 3 2
(4 c + 3 a - a - 27 a + 5) (4 c + 3 a + a - 27 a - 5))/256
(%i5) primelmt(b^3 - 3, a^2 - 2, c);
6 4 3 2
(%o5) [c - 6 c - 6 c + 12 c - 36 c + 1, b + a]
(%i6) factor(b^3 - 3, %[1]);
5 4 3 2
(%o6) ((48 c + 27 c - 320 c - 468 c + 124 c + 755 b - 1092)
5 5 4 4 3 3 2 2
((- 48 b c ) - 54 c - 27 b c + 64 c + 320 b c + 360 c + 468 b c + 149 c
2
- 124 b c - 1272 c + 755 b + 1092 b + 1606))/570025
</pre></div>
<p>In (%o1), <var>f_b</var> depends on <code>a</code>. Using <code>solve</code>, the solution depends on sqrt(2) and sqrt(3).
In (%o3), <em>K[sqrt(2), sqrt(3)]</em> is computed, and we see that the the primitive polynomial
in (%o1) factorizes completely here. In (%i5), we compute <em>K[sqrt(2), 3^{1/3}]</em>, and we see
that <code>b^3 - 3</code> gets one factor in this extension. If we assume this extension is real,
the two other factors are complex.
</p>
</dd></dl>
<a name="splitfield"></a><dl>
<dt><a name="index-splitfield"></a>Function: <strong>splitfield</strong> <em>(<var>p</var>, <var>x</var>)</em></dt>
<dd>
<p>Computes the splitting field of the polynomial <em>p(x)</em>.
In the generic case it is of degree <em>n!</em> in terms of the degree <em>n</em>
of <var>p</var>, but may be of lower order if the Galois group of <var>p</var>
is a strict subgroup of the group of permutations of <em>n</em>
elements. The function returns a primitive polynomial for this extension
and the expressions of the roots of <var>p</var> as polynomials of a root
of this primitive polynomial. The polynomial <var>f</var> may be
irreducible or factorizable.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) splitfield(x^3 + x + 1, x);
4 2
6 4 2 alg1 + 5 alg1 - 9 alg1 + 4
(%o1)/R/ [alg1 + 6 alg1 + 9 alg1 + 31, ----------------------------,
18
4 2 4 2
alg1 + 5 alg1 + 4 alg1 + 5 alg1 + 9 alg1 + 4
- -------------------, ----------------------------]
9 18
(%i2) splitfield(x^4 + 10*x^2 - 96*x - 71, x)[1];
8 6 5 4 3
(%o2)/R/ alg2 + 148 alg2 - 576 alg2 + 9814 alg2 - 42624 alg2
2
+ 502260 alg2 + 1109952 alg2 + 18860337
</pre></div>
<p>In the first case we have the primitive polynomial of degree 6 and the 3 roots
of the third degree equations in terms of a variable <code>alg1</code> produced by
the system. In the second case the primitive polynomial is of degree 8
instead of 24, because the Galois group of the equation is reduced to D8
since there are relations between the roots.
</p>
</dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="maxima_81.html#Introduction-to-algebraic-extensions" accesskey="p" rel="previous">Introduction to algebraic extensions</a>, Up: <a href="maxima_78.html#Polynomials" accesskey="u" rel="up">Polynomials</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|