1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Bessel Functions</title>
<meta name="description" content="Maxima 5.47.0 Manual: Bessel Functions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Bessel Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Special-Functions" rel="up" title="Special Functions">
<link href="maxima_86.html#Airy-Functions" rel="next" title="Airy Functions">
<link href="maxima_84.html#Introduction-to-Special-Functions" rel="previous" title="Introduction to Special Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Bessel-Functions"></a>
<div class="header">
<p>
Next: <a href="maxima_86.html#Airy-Functions" accesskey="n" rel="next">Airy Functions</a>, Previous: <a href="maxima_84.html#Introduction-to-Special-Functions" accesskey="p" rel="previous">Introduction to Special Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Bessel-Functions-1"></a>
<h3 class="section">15.2 Bessel Functions</h3>
<a name="bessel_005fj"></a><a name="Item_003a-Special_002fdeffn_002fbessel_005fj"></a><dl>
<dt><a name="index-bessel_005fj"></a>Function: <strong>bessel_j</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The Bessel function of the first kind of order <em>v</em> and argument <em>z</em>.
See <a href="https://personal.math.ubc.ca/~cbm/aands/page_360.htm">A&S eqn 9.1.10</a> and <a href="https://dlmf.nist.gov/10.2.E2">DLMF 10.2.E2</a>.
</p>
<p><code>bessel_j</code> is defined as
</p>
$$
J_v(z) = \sum_{k=0}^{\infty }{{{\left(-1\right)^{k}\,\left(z\over 2\right)^{v+2\,k}
}\over{k!\,\Gamma\left(v+k+1\right)}}}
$$
<p>although the infinite series is not used for computations.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>bessel_j</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="bessel_005fy"></a><a name="Item_003a-Special_002fdeffn_002fbessel_005fy"></a><dl>
<dt><a name="index-bessel_005fy"></a>Function: <strong>bessel_y</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The Bessel function of the second kind of order <em>v</em> and argument <em>z</em>.
See <a href="https://personal.math.ubc.ca/~cbm/aands/page_358.htm">A&S eqn 9.1.2</a> and <a href="https://dlmf.nist.gov/10.2.E3">DLMF 10.2.E3</a>.
</p>
<p><code>bessel_y</code> is defined as
$$
Y_v(z) = {{\cos(\pi v)\, J_v(z) - J_{-v}(z)}\over{\sin{\pi v}}}
$$</p>
<p>when <em>v</em> is not an integer. When <em>v</em> is an integer <em>n</em>,
the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>bessel_y</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="bessel_005fi"></a><a name="Item_003a-Special_002fdeffn_002fbessel_005fi"></a><dl>
<dt><a name="index-bessel_005fi"></a>Function: <strong>bessel_i</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The modified Bessel function of the first kind of order <em>v</em> and argument
<em>z</em>. See <a href="https://personal.math.ubc.ca/~cbm/aands/page_375.htm">A&S eqn 9.6.10</a> and <a href="https://dlmf.nist.gov/10.25.E2">DLMF 10.25.E2</a>.
</p>
<p><code>bessel_i</code> is defined as
$$
I_v(z) = \sum_{k=0}^{\infty } {{1\over{k!\,\Gamma
\left(v+k+1\right)}} {\left(z\over 2\right)^{v+2\,k}}}
$$</p>
<p>although the infinite series is not used for computations.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>bessel_i</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="bessel_005fk"></a><a name="Item_003a-Special_002fdeffn_002fbessel_005fk"></a><dl>
<dt><a name="index-bessel_005fk"></a>Function: <strong>bessel_k</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The modified Bessel function of the second kind of order <em>v</em> and argument
<em>z</em>. See <a href="https://personal.math.ubc.ca/~cbm/aands/page_375.htm">A&S eqn 9.6.2</a> and <a href="https://dlmf.nist.gov/10.27.E4">DLMF 10.27.E4</a>.
</p>
<p><code>bessel_k</code> is defined as
$$
K_v(z) = {{\pi\,\csc \left(\pi\,v\right)\,\left(I_{-v}(z)-I_{v}(z)\right)}\over{2}}
$$</p>
<p>when <em>v</em> is not an integer. If <em>v</em> is an integer <em>n</em>,
then the limit as <em>v</em> approaches <em>n</em> is taken.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>bessel_k</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="hankel_005f1"></a><a name="Item_003a-Special_002fdeffn_002fhankel_005f1"></a><dl>
<dt><a name="index-hankel_005f1"></a>Function: <strong>hankel_1</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The Hankel function of the first kind of order <em>v</em> and argument <em>z</em>.
See <a href="https://personal.math.ubc.ca/~cbm/aands/page_358.htm">A&S eqn 9.1.3</a> and <a href="https://dlmf.nist.gov/10.4.E3">DLMF 10.4.E3</a>.
</p>
<p><code>hankel_1</code> is defined as
</p>
$$
H^{(1)}_v(z) = J_v(z) + i Y_v(z)
$$
<p>Maxima evaluates <code>hankel_1</code> numerically for a complex order <em>v</em> and
complex argument <em>z</em> in float precision. The numerical evaluation in
bigfloat precision is not supported.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>hankel_1</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<p>Maxima knows the derivative of <code>hankel_1</code> wrt the argument <em>z</em>.
</p>
<p>Examples:
</p>
<p>Numerical evaluation:
</p>
<div class="example">
<pre class="example">(%i1) hankel_1(1,0.5);
(%o1) 0.24226845767487 - 1.471472392670243 %i
</pre><pre class="example">(%i2) hankel_1(1,0.5+%i);
(%o2) - 0.25582879948621 %i - 0.23957560188301
</pre></div>
<p>Expansion of <code>hankel_1</code> when <code>besselexpand</code> is <code>true</code>:
</p>
<div class="example">
<pre class="example">(%i1) hankel_1(1/2,z),besselexpand:true;
sqrt(2) sin(z) - sqrt(2) %i cos(z)
(%o1) ----------------------------------
sqrt(%pi) sqrt(z)
</pre></div>
<p>Derivative of <code>hankel_1</code> wrt the argument <em>z</em>. The derivative wrt the
order <em>v</em> is not supported. Maxima returns a noun form:
</p>
<div class="example">
<pre class="example">(%i1) diff(hankel_1(v,z),z);
hankel_1(v - 1, z) - hankel_1(v + 1, z)
(%o1) ---------------------------------------
2
</pre><pre class="example">(%i2) diff(hankel_1(v,z),v);
d
(%o2) -- (hankel_1(v, z))
dv
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="hankel_005f2"></a><a name="Item_003a-Special_002fdeffn_002fhankel_005f2"></a><dl>
<dt><a name="index-hankel_005f2"></a>Function: <strong>hankel_2</strong> <em>(<var>v</var>, <var>z</var>)</em></dt>
<dd>
<p>The Hankel function of the second kind of order <em>v</em> and argument <em>z</em>.
See <a href="https://personal.math.ubc.ca/~cbm/aands/page_358.htm">A&S eqn 9.1.4</a> and <a href="https://dlmf.nist.gov/10.4.E3">DLMF 10.4.E3</a>.
</p>
<p><code>hankel_2</code> is defined as
</p>
$$
H^{(2)}_v(z) = J_v(z) - i Y_v(z)
$$
<p>Maxima evaluates <code>hankel_2</code> numerically for a complex order <em>v</em> and
complex argument <em>z</em> in float precision. The numerical evaluation in
bigfloat precision is not supported.
</p>
<p>When <code>besselexpand</code> is <code>true</code>, <code>hankel_2</code> is expanded in terms
of elementary functions when the order <em>v</em> is half of an odd integer.
See <code><a href="#besselexpand">besselexpand</a></code>.
</p>
<p>Maxima knows the derivative of <code>hankel_2</code> wrt the argument <em>z</em>.
</p>
<p>For examples see <code>hankel_1</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="besselexpand"></a><a name="Item_003a-Special_002fdefvr_002fbesselexpand"></a><dl>
<dt><a name="index-besselexpand"></a>Option variable: <strong>besselexpand</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>Controls expansion of the Bessel, Hankel and Struve functions
when the order is half of
an odd integer. In this case, the functions can be expanded
in terms of other elementary functions. When <code>besselexpand</code> is <code>true</code>,
the Bessel function is expanded.
</p>
<div class="example">
<pre class="example">(%i1) besselexpand: false$
(%i2) bessel_j (3/2, z);
3
(%o2) bessel_j(-, z)
2
(%i3) besselexpand: true$
(%i4) bessel_j (3/2, z);
sin(z) cos(z)
sqrt(2) sqrt(z) (------ - ------)
2 z
z
(%o4) ---------------------------------
sqrt(%pi)
(%i5) bessel_y(3/2,z);
sin(z) cos(z)
sqrt(2) sqrt(z) ((- ------) - ------)
z 2
z
(%o5) -------------------------------------
sqrt(%pi)
(%i6) bessel_i(3/2,z);
cosh(z) sinh(z)
sqrt(2) sqrt(z) (------- - -------)
z 2
z
(%o6) -----------------------------------
sqrt(%pi)
(%i7) bessel_k(3/2,z);
1 - z
sqrt(%pi) (- + 1) %e
z
(%o7) -----------------------
sqrt(2) sqrt(z)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-flags-and-variables">Simplification flags and variables</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="scaled_005fbessel_005fi"></a><a name="Item_003a-Special_002fdeffn_002fscaled_005fbessel_005fi"></a><dl>
<dt><a name="index-scaled_005fbessel_005fi"></a>Function: <strong>scaled_bessel_i</strong> <em>(<var>v</var>, <var>z</var>) </em></dt>
<dd>
<p>The scaled modified Bessel function of the first kind of order
<em>v</em> and argument <em>z</em>. That is,
</p>
$$
{\rm scaled\_bessel\_i}(v,z) = e^{-|z|} I_v(z).
$$
<p>This function is particularly useful
for calculating
\(I_v(z)\) for large <em>z</em>, which is large.
However, maxima does not otherwise know much about this function. For
symbolic work, it is probably preferable to work with the expression
<code>exp(-abs(z))*bessel_i(v, z)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·</div></dd></dl>
<a name="scaled_005fbessel_005fi0"></a><a name="Item_003a-Special_002fdeffn_002fscaled_005fbessel_005fi0"></a><dl>
<dt><a name="index-scaled_005fbessel_005fi0"></a>Function: <strong>scaled_bessel_i0</strong> <em>(<var>z</var>) </em></dt>
<dd>
<p>Identical to <code>scaled_bessel_i(0,z)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="scaled_005fbessel_005fi1"></a><a name="Item_003a-Special_002fdeffn_002fscaled_005fbessel_005fi1"></a><dl>
<dt><a name="index-scaled_005fbessel_005fi1"></a>Function: <strong>scaled_bessel_i1</strong> <em>(<var>z</var>)</em></dt>
<dd>
<p>Identical to <code>scaled_bessel_i(1,z)</code>.
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></p></dd></dl>
<a name="g_t_0025s"></a><a name="Item_003a-Special_002fdeffn_002f_0025s"></a><dl>
<dt><a name="index-_0025s"></a>Function: <strong>%s</strong> <em>[<var>u</var>,<var>v</var>] (<var>z</var>) </em></dt>
<dd><p>Lommel’s little
\(s_{\mu,\nu}(z)\) function.
(<a href="https://dlmf.nist.gov/11.9.E3">DLMF 11.9.E3</a>)(G&R 8.570.1).
</p>
<p>This Lommel function is the particular solution of the inhomogeneous
Bessel differential equation:
</p>
$$
{d^2\over dz^2} + {1\over z}{dw\over dz} + \left(1-{\nu^2\over z^2}\right) w = z^{\mu-1}
$$
<p>This can be defined by the series
</p>
$$
s_{\mu,\nu}(z) = z^{\mu+1}\sum_{k=0}^{\infty} (-1)^k {z^{2k}\over a_{k+1}(\mu, \nu)}
$$
<p>where
</p>
$$
a_k(\mu,\nu) = \prod_{m=1}^k \left(\left(\mu + 2m-1\right)^2-\nu^2\right) = 4^k\left(\mu-\nu+1\over 2\right)_k \left(\mu+\nu+1\over 2\right)_k
$$
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="Item_003a-Special_002fdeffn_002fslommel"></a><dl>
<dt><a name="index-slommel"></a>Function: <strong>slommel</strong> <em>[<var>u</var>,<var>v</var>] (<var>z</var>) </em></dt>
<dd><p>Lommel’s big
\(S_{\mu,\nu}(z)\) function.
(<a href="https://dlmf.nist.gov/11.9.E5">DLMF 11.9.E5</a>)(G&R 8.570.2).
</p>
<p>Lommels big S function is another particular solution of the
inhomogeneous Bessel differential equation
(see <a href="#g_t_0025s">%s</a>) defined for all values
of
\(\mu\) and
\(\nu\), where
</p>
$$
\eqalign{
S_{\mu,\nu}(z) = s_{\mu,\nu}(z) + 2^{\mu-1} & \Gamma\left({\mu\over 2} + {\nu\over 2} + {1\over 2}\right) \Gamma\left({\mu\over 2} - {\nu\over 2} + {1\over 2}\right) \cr
& \times \left(\sin\left({(\mu-\nu)\pi\over 2}\right) J_{\nu}(z) - \cos\left({(\mu-\nu)\pi\over 2}\right) Y_{\nu}(z)\right)
}
$$
<p>When
\(\mu\pm \nu\)) is an odd
negative integer, the limit must be used.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="Item_003a-Special_002fnode_002fAiry-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_86.html#Airy-Functions" accesskey="n" rel="next">Airy Functions</a>, Previous: <a href="maxima_84.html#Introduction-to-Special-Functions" accesskey="p" rel="previous">Introduction to Special Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|