1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Hypergeometric Functions</title>
<meta name="description" content="Maxima 5.47.0 Manual: Hypergeometric Functions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Hypergeometric Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Special-Functions" rel="up" title="Special Functions">
<link href="maxima_92.html#Parabolic-Cylinder-Functions" rel="next" title="Parabolic Cylinder Functions">
<link href="maxima_90.html#Struve-Functions" rel="previous" title="Struve Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hypergeometric-Functions"></a>
<div class="header">
<p>
Next: <a href="maxima_92.html#Parabolic-Cylinder-Functions" accesskey="n" rel="next">Parabolic Cylinder Functions</a>, Previous: <a href="maxima_90.html#Struve-Functions" accesskey="p" rel="previous">Struve Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hypergeometric-Functions-1"></a>
<h3 class="section">15.8 Hypergeometric Functions</h3>
<p>The Hypergeometric Functions are defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, <a href="https://personal.math.ubc.ca/~cbm/aands/page_504.htm">A&S Chapters 13</a> and
<a href="https://personal.math.ubc.ca/~cbm/aands/page_555.htm">A&S 15</a>.
</p>
<p>Maxima has very limited knowledge of these functions. They
can be returned from function <code>hgfred</code>.
</p>
<a name="Item_003a-Special_002fdeffn_002f_0025m"></a><dl>
<dt><a name="index-_0025m"></a>Function: <strong>%m</strong> <em>[<var>k</var>,<var>u</var>] (<var>z</var>) </em></dt>
<dd><p>Whittaker M function (<a href="https://personal.math.ubc.ca/~cbm/aands/page_505.htm">A&S eqn 13.1.32</a>):
</p>
$$
M_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} M\left({1\over 2} + \mu - \kappa, 1 + 2\mu, z\right)
$$
<p>where <em>M(a,b,z)</em> is Kummer’s solution of the confluent hypergeometric equation.
</p>
<p>This can also be expressed by the series (<a href="https://dlmf.nist.gov/13.14.E6">DLMF 13.14.E6</a>):
$$
M_{\kappa,\mu}(z) = e^{-{1\over 2} z} z^{{1\over 2} + \mu}
\sum_{s=0}^{\infty} {\left({1\over 2} + \mu - \kappa\right)_s \over (1 + 2\mu)_s s!} z^s
$$</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="Item_003a-Special_002fdeffn_002f_0025w"></a><dl>
<dt><a name="index-_0025w"></a>Function: <strong>%w</strong> <em>[<var>k</var>,<var>u</var>] (<var>z</var>) </em></dt>
<dd><p>Whittaker W function (<a href="https://personal.math.ubc.ca/~cbm/aands/page_505.htm">A&S eqn 13.1.33</a>):
$$
W_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} U\left({1\over 2} + \mu - \kappa, 1+2\mu,z\right)
$$</p>
<p>where <em>U(a,b,z)</em> is Kummer’s second solution of the confluent hypergeometric equation.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="Item_003a-Special_002fdeffn_002f_0025f"></a><dl>
<dt><a name="index-_0025f"></a>Function: <strong>%f</strong> <em>[<var>p</var>,<var>q</var>] (<var>[a],[b],z</var>) </em></dt>
<dd><p>The
\(_{p}F_{q}(a_1,a_2,...,a_p;b_1,b_2,...,b_q;z)\) hypergeometric function,
where <var>a</var> a list of length <var>p</var> and
<var>b</var> a list of length <var>q</var>.
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></p></dd></dl>
<a name="Item_003a-Special_002fdeffn_002fhypergeometric"></a><dl>
<dt><a name="index-hypergeometric"></a>Function: <strong>hypergeometric</strong> <em>([<var>a1</var>, ..., <var>ap</var>],[<var>b1</var>, ... ,<var>bq</var>], x)</em></dt>
<dd><p>The hypergeometric function. Unlike Maxima’s <code>%f</code> hypergeometric
function, the function <code>hypergeometric</code> is a simplifying
function; also, <code>hypergeometric</code> supports complex double and
big floating point evaluation. For the Gauss hypergeometric function,
that is <em>p = 2</em> and <em>q = 1</em>, floating point evaluation
outside the unit circle is supported, but in general, it is not
supported.
</p>
<p>When the option variable <code>expand_hypergeometric</code> is true (default
is false) and one of the arguments <code>a1</code> through <code>ap</code> is a
negative integer (a polynomial case), <code>hypergeometric</code> returns an
expanded polynomial.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) hypergeometric([],[],x);
(%o1) %e^x
</pre></div>
<p>Polynomial cases automatically expand when <code>expand_hypergeometric</code> is true:
</p>
<div class="example">
<pre class="example">(%i2) hypergeometric([-3],[7],x);
(%o2) hypergeometric([-3],[7],x)
(%i3) hypergeometric([-3],[7],x), expand_hypergeometric : true;
(%o3) -x^3/504+3*x^2/56-3*x/7+1
</pre></div>
<p>Both double float and big float evaluation is supported:
</p>
<div class="example">
<pre class="example">(%i4) hypergeometric([5.1],[7.1 + %i],0.42);
(%o4) 1.346250786375334 - 0.0559061414208204 %i
(%i5) hypergeometric([5,6],[8], 5.7 - %i);
(%o5) .007375824009774946 - .001049813688578674 %i
(%i6) hypergeometric([5,6],[8], 5.7b0 - %i), fpprec : 30;
(%o6) 7.37582400977494674506442010824b-3
- 1.04981368857867315858055393376b-3 %i
</pre></div>
</dd></dl>
<a name="Item_003a-Special_002fdeffn_002fhypergeometric_005fsimp"></a><dl>
<dt><a name="index-hypergeometric_005fsimp"></a>Function: <strong>hypergeometric_simp</strong> <em>(<var>e</var>)</em></dt>
<dd>
<p><code>hypergeometric_simp</code> simplifies hypergeometric functions
by applying <code>hgfred</code>
to the arguments of any hypergeometric functions in the expression <var>e</var>.
</p>
<p>Only instances of <code>hypergeometric</code> are affected;
any <code>%f</code>, <code>%w</code>, and <code>%m</code> in the expression <var>e</var> are not affected.
Any unsimplified hypergeometric functions are returned unchanged
(instead of changing to <code>%f</code> as <code>hgfred</code> would).
</p>
<p><code>load("hypergeometric");</code> loads this function.
</p>
<p>See also <code><a href="#hgfred">hgfred</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) load ("hypergeometric") $
(%i2) foo : [hypergeometric([1,1], [2], z), hypergeometric([1/2], [1], z)];
(%o2) [hypergeometric([1, 1], [2], z),
1
hypergeometric([-], [1], z)]
2
(%i3) hypergeometric_simp (foo);
log(1 - z) z z/2
(%o3) [- ----------, bessel_i(0, -) %e ]
z 2
(%i4) bar : hypergeometric([n], [m], z + 1);
(%o4) hypergeometric([n], [m], z + 1)
(%i5) hypergeometric_simp (bar);
(%o5) hypergeometric([n], [m], z + 1)
</pre></div>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Hypergeometric-functions">Hypergeometric functions</a>
·<a href="maxima_424.html#Category_003a-Simplification-functions">Simplification functions</a>
·<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
·</div></dd></dl>
<a name="hgfred"></a><a name="Item_003a-Special_002fdeffn_002fhgfred"></a><dl>
<dt><a name="index-hgfred"></a>Function: <strong>hgfred</strong> <em>(<var>a</var>, <var>b</var>, <var>t</var>)</em></dt>
<dd>
<p>Simplify the generalized hypergeometric function in terms of other,
simpler, forms. <var>a</var> is a list of numerator parameters and <var>b</var>
is a list of the denominator parameters.
</p>
<p>If <code>hgfred</code> cannot simplify the hypergeometric function, it returns
an expression of the form <code>%f[p,q]([a], [b], x)</code> where <var>p</var> is
the number of elements in <var>a</var>, and <var>q</var> is the number of elements
in <var>b</var>. This is the usual
\(_pF_q\) generalized hypergeometric
function.
</p>
<div class="example">
<pre class="example">(%i1) assume(not(equal(z,0)));
(%o1) [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);
v/2 %i z
4 bessel_j(v, z) gamma(v + 1) %e
(%o2) ---------------------------------------
v
z
(%i3) hgfred([1,1],[2],z);
log(1 - z)
(%o3) - ----------
z
(%i4) hgfred([a,a+1/2],[3/2],z^2);
1 - 2 a 1 - 2 a
(z + 1) - (1 - z)
(%o4) -------------------------------
2 (1 - 2 a) z
</pre></div>
<p>It can be beneficial to load orthopoly too as the following example
shows. Note that <var>L</var> is the generalized Laguerre polynomial.
</p>
<div class="example">
<pre class="example">(%i5) load("orthopoly")$
(%i6) hgfred([-2],[a],z);
</pre><pre class="example">
(a - 1)
2 L (z)
2
(%o6) -------------
a (a + 1)
</pre><pre class="example">(%i7) ev(%);
2
z 2 z
(%o7) --------- - --- + 1
a (a + 1) a
</pre></div>
</dd></dl>
<a name="Item_003a-Special_002fnode_002fParabolic-Cylinder-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_92.html#Parabolic-Cylinder-Functions" accesskey="n" rel="next">Parabolic Cylinder Functions</a>, Previous: <a href="maxima_90.html#Struve-Functions" accesskey="p" rel="previous">Struve Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|