File: maxima_91.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (293 lines) | stat: -rw-r--r-- 13,957 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Hypergeometric Functions</title>

<meta name="description" content="Maxima 5.47.0 Manual: Hypergeometric Functions">
<meta name="keywords" content="Maxima 5.47.0 Manual: Hypergeometric Functions">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Special-Functions" rel="up" title="Special Functions">
<link href="maxima_92.html#Parabolic-Cylinder-Functions" rel="next" title="Parabolic Cylinder Functions">
<link href="maxima_90.html#Struve-Functions" rel="previous" title="Struve Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Hypergeometric-Functions"></a>
<div class="header">
<p>
Next: <a href="maxima_92.html#Parabolic-Cylinder-Functions" accesskey="n" rel="next">Parabolic Cylinder Functions</a>, Previous: <a href="maxima_90.html#Struve-Functions" accesskey="p" rel="previous">Struve Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Hypergeometric-Functions-1"></a>
<h3 class="section">15.8 Hypergeometric Functions</h3>

<p>The Hypergeometric Functions are defined in Abramowitz and Stegun,
<i>Handbook of Mathematical Functions</i>, <a href="https://personal.math.ubc.ca/~cbm/aands/page_504.htm">A&amp;S Chapters 13</a> and
<a href="https://personal.math.ubc.ca/~cbm/aands/page_555.htm">A&amp;S 15</a>.
</p>
<p>Maxima has very limited knowledge of these functions.  They
can be returned from function <code>hgfred</code>.
</p>
<a name="Item_003a-Special_002fdeffn_002f_0025m"></a><dl>
<dt><a name="index-_0025m"></a>Function: <strong>%m</strong> <em>[<var>k</var>,<var>u</var>] (<var>z</var>) </em></dt>
<dd><p>Whittaker M function (<a href="https://personal.math.ubc.ca/~cbm/aands/page_505.htm">A&amp;S eqn 13.1.32</a>):
</p>
$$
M_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} M\left({1\over 2} + \mu - \kappa, 1 + 2\mu, z\right)
$$

<p>where <em>M(a,b,z)</em> is Kummer&rsquo;s solution of the confluent hypergeometric equation.
</p>
<p>This can also be expressed by the series (<a href="https://dlmf.nist.gov/13.14.E6">DLMF 13.14.E6</a>):
$$
M_{\kappa,\mu}(z) = e^{-{1\over 2} z} z^{{1\over 2} + \mu}
\sum_{s=0}^{\infty} {\left({1\over 2} + \mu - \kappa\right)_s \over (1 + 2\mu)_s s!} z^s
$$</p>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
&middot;</div></dd></dl>

<a name="Item_003a-Special_002fdeffn_002f_0025w"></a><dl>
<dt><a name="index-_0025w"></a>Function: <strong>%w</strong> <em>[<var>k</var>,<var>u</var>] (<var>z</var>) </em></dt>
<dd><p>Whittaker W function (<a href="https://personal.math.ubc.ca/~cbm/aands/page_505.htm">A&amp;S eqn 13.1.33</a>):
$$
W_{\kappa,\mu}(z) = e^{-{1\over 2}z} z^{{1\over 2} + \mu} U\left({1\over 2} + \mu - \kappa, 1+2\mu,z\right)
$$</p>

<p>where <em>U(a,b,z)</em> is Kummer&rsquo;s second solution of the confluent hypergeometric equation.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
&middot;</div></dd></dl>


<a name="Item_003a-Special_002fdeffn_002f_0025f"></a><dl>
<dt><a name="index-_0025f"></a>Function: <strong>%f</strong> <em>[<var>p</var>,<var>q</var>] (<var>[a],[b],z</var>) </em></dt>
<dd><p>The 
\(_{p}F_{q}(a_1,a_2,...,a_p;b_1,b_2,...,b_q;z)\) hypergeometric function,
where <var>a</var> a list of length <var>p</var> and 
<var>b</var> a list of length <var>q</var>.
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Bessel-functions">Bessel functions</a>
&middot;<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
&middot;</div></p></dd></dl>

<a name="Item_003a-Special_002fdeffn_002fhypergeometric"></a><dl>
<dt><a name="index-hypergeometric"></a>Function: <strong>hypergeometric</strong> <em>([<var>a1</var>, ..., <var>ap</var>],[<var>b1</var>, ... ,<var>bq</var>], x)</em></dt>
<dd><p>The hypergeometric function. Unlike Maxima&rsquo;s <code>%f</code> hypergeometric
function, the function <code>hypergeometric</code> is a simplifying
function; also, <code>hypergeometric</code> supports complex double and
big floating point evaluation. For the Gauss hypergeometric function,
that is <em>p = 2</em> and <em>q = 1</em>, floating point evaluation
outside the unit circle is supported, but in general, it is not
supported.
</p>
<p>When the option variable <code>expand_hypergeometric</code> is true (default
is false) and one of the arguments <code>a1</code> through <code>ap</code> is a
negative integer (a polynomial case), <code>hypergeometric</code> returns an
expanded polynomial. 
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1)  hypergeometric([],[],x);
(%o1) %e^x
</pre></div>

<p>Polynomial cases automatically expand when <code>expand_hypergeometric</code> is true:
</p>
<div class="example">
<pre class="example">(%i2) hypergeometric([-3],[7],x);
(%o2) hypergeometric([-3],[7],x)

(%i3) hypergeometric([-3],[7],x), expand_hypergeometric : true;
(%o3) -x^3/504+3*x^2/56-3*x/7+1
</pre></div>

<p>Both double float and big float evaluation is supported:
</p>
<div class="example">
<pre class="example">(%i4) hypergeometric([5.1],[7.1 + %i],0.42);
(%o4)       1.346250786375334 - 0.0559061414208204 %i
(%i5) hypergeometric([5,6],[8], 5.7 - %i);
(%o5)     .007375824009774946 - .001049813688578674 %i
(%i6) hypergeometric([5,6],[8], 5.7b0 - %i), fpprec : 30;
(%o6) 7.37582400977494674506442010824b-3
                          - 1.04981368857867315858055393376b-3 %i
</pre></div>
</dd></dl>

<a name="Item_003a-Special_002fdeffn_002fhypergeometric_005fsimp"></a><dl>
<dt><a name="index-hypergeometric_005fsimp"></a>Function: <strong>hypergeometric_simp</strong> <em>(<var>e</var>)</em></dt>
<dd>
<p><code>hypergeometric_simp</code> simplifies hypergeometric functions
by applying <code>hgfred</code>
to the arguments of any hypergeometric functions in the expression <var>e</var>.
</p>
<p>Only instances of <code>hypergeometric</code> are affected;
any <code>%f</code>, <code>%w</code>, and <code>%m</code> in the expression <var>e</var> are not affected.
Any unsimplified hypergeometric functions are returned unchanged
(instead of changing to <code>%f</code> as <code>hgfred</code> would).
</p>
<p><code>load(&quot;hypergeometric&quot;);</code> loads this function.
</p>
<p>See also <code><a href="#hgfred">hgfred</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;hypergeometric&quot;) $
(%i2) foo : [hypergeometric([1,1], [2], z), hypergeometric([1/2], [1], z)];
(%o2) [hypergeometric([1, 1], [2], z), 
                                                     1
                                     hypergeometric([-], [1], z)]
                                                     2
(%i3) hypergeometric_simp (foo);
                 log(1 - z)              z    z/2
(%o3)         [- ----------, bessel_i(0, -) %e   ]
                     z                   2
(%i4) bar : hypergeometric([n], [m], z + 1);
(%o4)            hypergeometric([n], [m], z + 1)
(%i5) hypergeometric_simp (bar);
(%o5)            hypergeometric([n], [m], z + 1)
</pre></div>

<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Hypergeometric-functions">Hypergeometric functions</a>
&middot;<a href="maxima_424.html#Category_003a-Simplification-functions">Simplification functions</a>
&middot;<a href="maxima_424.html#Category_003a-Special-functions">Special functions</a>
&middot;</div></dd></dl>

<a name="hgfred"></a><a name="Item_003a-Special_002fdeffn_002fhgfred"></a><dl>
<dt><a name="index-hgfred"></a>Function: <strong>hgfred</strong> <em>(<var>a</var>, <var>b</var>, <var>t</var>)</em></dt>
<dd>
<p>Simplify the generalized hypergeometric function in terms of other,
simpler, forms.  <var>a</var> is a list of numerator parameters and <var>b</var>
is a list of the denominator parameters. 
</p>
<p>If <code>hgfred</code> cannot simplify the hypergeometric function, it returns
an expression of the form <code>%f[p,q]([a], [b], x)</code> where <var>p</var> is
the number of elements in <var>a</var>, and <var>q</var> is the number of elements
in <var>b</var>.  This is the usual 
\(_pF_q\) generalized hypergeometric
function. 
</p>
<div class="example">
<pre class="example">(%i1) assume(not(equal(z,0)));
(%o1)                          [notequal(z, 0)]
(%i2) hgfred([v+1/2],[2*v+1],2*%i*z);

                     v/2                               %i z
                    4    bessel_j(v, z) gamma(v + 1) %e
(%o2)               ---------------------------------------
                                       v
                                      z
(%i3) hgfred([1,1],[2],z);

                                   log(1 - z)
(%o3)                            - ----------
                                       z
(%i4) hgfred([a,a+1/2],[3/2],z^2);

                               1 - 2 a          1 - 2 a
                        (z + 1)        - (1 - z)
(%o4)                   -------------------------------
                                 2 (1 - 2 a) z

</pre></div>

<p>It can be beneficial to load orthopoly too as the following example
shows.  Note that <var>L</var> is the generalized Laguerre polynomial.
</p>
<div class="example">
<pre class="example">(%i5) load(&quot;orthopoly&quot;)$
(%i6) hgfred([-2],[a],z);
</pre><pre class="example">
                                    (a - 1)
                                 2 L       (z)
                                    2
(%o6)                            -------------
                                   a (a + 1)
</pre><pre class="example">(%i7) ev(%);

                                  2
                                 z        2 z
(%o7)                         --------- - --- + 1
                              a (a + 1)    a

</pre></div>
</dd></dl>

<a name="Item_003a-Special_002fnode_002fParabolic-Cylinder-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_92.html#Parabolic-Cylinder-Functions" accesskey="n" rel="next">Parabolic Cylinder Functions</a>, Previous: <a href="maxima_90.html#Struve-Functions" accesskey="p" rel="previous">Struve Functions</a>, Up: <a href="maxima_83.html#Special-Functions" accesskey="u" rel="up">Special Functions</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>