1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Introduction to Elliptic Functions and Integrals</title>
<meta name="description" content="Maxima 5.47.0 Manual: Introduction to Elliptic Functions and Integrals">
<meta name="keywords" content="Maxima 5.47.0 Manual: Introduction to Elliptic Functions and Integrals">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_94.html#Elliptic-Functions" rel="up" title="Elliptic Functions">
<link href="maxima_96.html#Functions-and-Variables-for-Elliptic-Functions" rel="next" title="Functions and Variables for Elliptic Functions">
<link href="maxima_94.html#Elliptic-Functions" rel="previous" title="Elliptic Functions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Introduction-to-Elliptic-Functions-and-Integrals"></a>
<div class="header">
<p>
Next: <a href="maxima_96.html#Functions-and-Variables-for-Elliptic-Functions" accesskey="n" rel="next">Functions and Variables for Elliptic Functions</a>, Up: <a href="maxima_94.html#Elliptic-Functions" accesskey="u" rel="up">Elliptic Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Introduction-to-Elliptic-Functions-and-Integrals-1"></a>
<h3 class="section">16.1 Introduction to Elliptic Functions and Integrals</h3>
<p>Maxima includes support for Jacobian elliptic functions and for
complete and incomplete elliptic integrals. This includes symbolic
manipulation of these functions and numerical evaluation as well.
Definitions of these functions and many of their properties can by
found in Abramowitz and Stegun, <a href="https://personal.math.ubc.ca/~cbm/aands/page_567.htm">A&S Chapter 16</a> and
<a href="https://personal.math.ubc.ca/~cbm/aands/page_587.htm">A&S Chapter 17.</a> See also <a href="https://dlmf.nist.gov/22.2">DLMF 22.2</a>. As much as possible,
we use the definitions and relationships given in Abramowitz and Stegun.
</p>
<p>In particular, all elliptic functions and integrals use the parameter
<em>m</em> instead of the modulus <em>k</em> or the modular angle
<em>\alpha</em>. The following relationships are true:
</p>
$$
\eqalign{
m &= k^2 \cr
k &= \sin\alpha
}
$$
<p>Note that Abramowitz and Stegun uses the notation
\({\rm
sn}(u|m)\) where we use
\({\rm
sn}(u,m)\) instead. The DLMF uses modulus <em>k</em>
instead of the parameter <em>m</em>.
</p>
<p>The elliptic functions and integrals are primarily intended to support
symbolic computation. Therefore, most of derivatives of the functions
and integrals are known. However, if floating-point values are given,
a floating-point result is returned.
</p>
<p>Support for most of the other properties of elliptic functions and
integrals other than derivatives has not yet been written.
</p>
<p>Some examples of elliptic functions:
</p><div class="example">
<pre class="example">(%i1) jacobi_sn (u, m);
(%o1) jacobi_sn(u, m)
(%i2) jacobi_sn (u, 1);
(%o2) tanh(u)
(%i3) jacobi_sn (u, 0);
(%o3) sin(u)
(%i4) diff (jacobi_sn (u, m), u);
(%o4) jacobi_cn(u, m) jacobi_dn(u, m)
(%i5) diff (jacobi_sn (u, m), m);
(%o5) jacobi_cn(u, m) jacobi_dn(u, m)
elliptic_e(asin(jacobi_sn(u, m)), m)
(u - ------------------------------------)/(2 m)
1 - m
2
jacobi_cn (u, m) jacobi_sn(u, m)
+ --------------------------------
2 (1 - m)
</pre></div>
<p>Some examples of elliptic integrals:
</p><div class="example">
<pre class="example">(%i1) elliptic_f (phi, m);
(%o1) elliptic_f(phi, m)
(%i2) elliptic_f (phi, 0);
(%o2) phi
(%i3) elliptic_f (phi, 1);
phi %pi
(%o3) log(tan(--- + ---))
2 4
(%i4) elliptic_e (phi, 1);
(%o4) sin(phi)
(%i5) elliptic_e (phi, 0);
(%o5) phi
(%i6) elliptic_kc (1/2);
1
(%o6) elliptic_kc(-)
2
(%i7) makegamma (%);
2 1
gamma (-)
4
(%o7) -----------
4 sqrt(%pi)
(%i8) diff (elliptic_f (phi, m), phi);
1
(%o8) ---------------------
2
sqrt(1 - m sin (phi))
(%i9) diff (elliptic_f (phi, m), m);
elliptic_e(phi, m) - (1 - m) elliptic_f(phi, m)
(%o9) (-----------------------------------------------
m
cos(phi) sin(phi)
- ---------------------)/(2 (1 - m))
2
sqrt(1 - m sin (phi))
</pre></div>
<p>Support for elliptic functions and integrals was written by Raymond
Toy. It is placed under the terms of the General Public License (GPL)
that governs the distribution of Maxima.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Elliptic-functions">Elliptic functions</a>
·</div>
<a name="Item_003a-Elliptic_002fnode_002fFunctions-and-Variables-for-Elliptic-Functions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_96.html#Functions-and-Variables-for-Elliptic-Functions" accesskey="n" rel="next">Functions and Variables for Elliptic Functions</a>, Up: <a href="maxima_94.html#Elliptic-Functions" accesskey="u" rel="up">Elliptic Functions</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|