File: maxima_99.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (228 lines) | stat: -rw-r--r-- 12,303 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima 5.47.0 Manual: Functions and Variables for Limits</title>

<meta name="description" content="Maxima 5.47.0 Manual: Functions and Variables for Limits">
<meta name="keywords" content="Maxima 5.47.0 Manual: Functions and Variables for Limits">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_423.html#Function-and-Variable-Index" rel="index" title="Function and Variable Index">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_98.html#Limits" rel="up" title="Limits">
<link href="maxima_100.html#Differentiation" rel="next" title="Differentiation">
<link href="maxima_98.html#Limits" rel="previous" title="Limits">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Limits"></a>
<div class="header">
<p>
Previous: <a href="maxima_98.html#Limits" accesskey="p" rel="previous">Limits</a>, Up: <a href="maxima_98.html#Limits" accesskey="u" rel="up">Limits</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Limits-1"></a>
<h3 class="section">17.1 Functions and Variables for Limits</h3>

<a name="lhospitallim"></a><a name="Item_003a-Limits_002fdefvr_002flhospitallim"></a><dl>
<dt><a name="index-lhospitallim"></a>Option variable: <strong>lhospitallim</strong></dt>
<dd><p>Default value: 4
</p>
<p><code>lhospitallim</code> is the maximum number of times L&rsquo;Hospital&rsquo;s
rule is used in <code><a href="#limit">limit</a></code>.  This prevents infinite looping in cases like
<code>limit (cot(x)/csc(x), x, 0)</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div></dd></dl>

<a name="limit"></a><a name="Item_003a-Limits_002fdeffn_002flimit"></a><dl>
<dt><a name="index-limit"></a>Function: <strong>limit</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>limit</tt> (<var>expr</var>, <var>x</var>, <var>val</var>, <var>dir</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>limit</tt> (<var>expr</var>, <var>x</var>, <var>val</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>limit</tt> (<var>expr</var>)</em></dt>
<dd>
<p>Computes the limit of <var>expr</var> as the real variable <var>x</var> approaches the
value <var>val</var> from the direction <var>dir</var>.  <var>dir</var> may have the value
<code>plus</code> for a limit from above, <code>minus</code> for a limit from below, or
may be omitted (implying a two-sided limit is to be computed).
</p>
<p><code>limit</code> uses the following special symbols: <code>inf</code> (positive infinity)
and <code><a href="maxima_18.html#minf">minf</a></code> (negative infinity).  On output it may also use <code><a href="maxima_18.html#und">und</a></code>
(undefined), <code><a href="maxima_18.html#ind">ind</a></code> (indefinite but bounded) and <code><a href="maxima_18.html#infinity">infinity</a></code> (complex
infinity).
</p>
<p><code>infinity</code> (complex infinity) is returned when the limit of
the absolute value of the expression is positive infinity, but
the limit of the expression itself is not positive infinity or
negative infinity.  This includes cases where the limit of the
complex argument is a constant, as in <code>limit(log(x), x, minf)</code>, 
cases where the complex argument oscillates, as in
<code>limit((-2)^x, x, inf)</code>, and cases where the complex
argument is different for either side of a two-sided limit, as in
<code>limit(1/x, x, 0)</code> and <code>limit(log(x), x, 0)</code>.
</p>
<p><code><a href="#lhospitallim">lhospitallim</a></code> is the maximum number of times L&rsquo;Hospital&rsquo;s rule
is used in <code>limit</code>.  This prevents infinite looping in cases like
<code>limit (cot(x)/csc(x), x, 0)</code>.
</p>
<p><code><a href="#tlimswitch">tlimswitch</a></code> when true will allow the <code>limit</code> command to use
Taylor series expansion when necessary.
</p>
<p><code><a href="#limsubst">limsubst</a></code> prevents <code>limit</code> from attempting substitutions on
unknown forms.  This is to avoid bugs like <code>limit (f(n)/f(n+1), n, inf)</code>
giving 1.  Setting <code>limsubst</code> to <code>true</code> will allow such
substitutions.
</p>
<p><code>limit</code> with one argument is often called upon to simplify constant
expressions, for example, <code>limit (inf-1)</code>.
</p>
<p><code>example (limit)</code> displays some examples.
</p>
<p>For the method see Wang, P., &quot;Evaluation of Definite Integrals by Symbolic
Manipulation&quot;, Ph.D. thesis, MAC TR-92, October 1971.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div></dd></dl>

<a name="limsubst"></a><a name="Item_003a-Limits_002fdefvr_002flimsubst"></a><dl>
<dt><a name="index-limsubst"></a>Option variable: <strong>limsubst</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>prevents <code><a href="#limit">limit</a></code> from attempting substitutions on unknown forms.  This is
to avoid bugs like <code>limit (f(n)/f(n+1), n, inf)</code> giving 1.  Setting
<code>limsubst</code> to <code>true</code> will allow such substitutions.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div></dd></dl>

<a name="tlimit"></a><a name="Item_003a-Limits_002fdeffn_002ftlimit"></a><dl>
<dt><a name="index-tlimit"></a>Function: <strong>tlimit</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>tlimit</tt> (<var>expr</var>, <var>x</var>, <var>val</var>, <var>dir</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>tlimit</tt> (<var>expr</var>, <var>x</var>, <var>val</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>tlimit</tt> (<var>expr</var>)</em></dt>
<dd>
<p>Take the limit of the Taylor series expansion of <code>expr</code> in <code>x</code>
at <code>val</code> from direction <code>dir</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div></dd></dl>

<a name="tlimswitch"></a><a name="Item_003a-Limits_002fdefvr_002ftlimswitch"></a><dl>
<dt><a name="index-tlimswitch"></a>Option variable: <strong>tlimswitch</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>tlimswitch</code> is <code>true</code>, the <code><a href="#limit">limit</a></code> command will use a
Taylor series expansion if the limit of the input expression cannot be computed
directly.  This allows evaluation of limits such as
<code>limit(x/(x-1)-1/log(x),x,1,plus)</code>.  When <code>tlimswitch</code> is <code>false</code>
and the limit of input expression cannot be computed directly, <code>limit</code> will
return an unevaluated limit expression.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div></dd></dl>

<a name="gruntz"></a><a name="Item_003a-Limits_002fdeffn_002fgruntz"></a><dl>
<dt><a name="index-gruntz"></a>Function: <strong>gruntz</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>gruntz</tt> (<var>expr</var>, <var>var</var>, <var>value</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>gruntz</tt> (<var>expr</var>, <var>var</var>, <var>value</var>, <var>direction</var>)</em></dt>
<dd>
<p>Compute limit of expression <var>expr</var> with respect to variable <var>var</var> at <var>value</var>.
When <var>value</var> is not infinite (i.e., not <code>inf</code> or <code>minf</code>),
<var>direction</var> must be supplied,
either <code>plus</code> for a limit from above,
or <code>minus</code> for a limit from below.
</p>
<p>If <code>gruntz</code> cannot find the limit,
an unevaluated expression <code>gruntz(...)</code> is returned.
</p>
<p><code>gruntz</code> implements the method described in the dissertation of
Dominik Gruntz, &quot;On Computing Limits in a Symbolic Manipulation System&quot;
(ETH Zurich, 1996).
</p>
<p>The algorithm identifies the most rapidly varying subexpression,
replaces it with a new variable, rewrites the expression in terms
of the new variable, and then repeats.
</p>
<p>The algorithm doesn&rsquo;t handle oscillating functions, so it can&rsquo;t do things like
<code>limit(sin(x)/x, x, inf)</code>.
</p>
<p>To handle limits involving functions such as <code>gamma(x)</code> and <code>erf(x)</code>,
the Gruntz algorithm requires them to be written in terms of asymptotic expansions,
which Maxima cannot currently do.
</p>
<p>The Gruntz algorithm assumes that variables and expressions are real,
so, for example, it can&rsquo;t handle <code>limit((-2)^x, x, inf)</code>.
</p>
<p><code>gruntz</code> is one of the methods called from <code>limit</code>.
</p>
<div class=categorybox>
Categories:<a href="maxima_424.html#Category_003a-Limits">Limits</a>
&middot;</div>
</dd></dl>

<hr>
<div class="header">
<p>
Previous: <a href="maxima_98.html#Limits" accesskey="p" rel="previous">Limits</a>, Up: <a href="maxima_98.html#Limits" accesskey="u" rel="up">Limits</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_423.html#Function-and-Variable-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>