1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
@menu
* Package quantum_computing::
* Functions and Variables for Quantum_Computing::
@end menu
@node Package quantum_computing, Functions and Variables for Quantum_Computing, quantum_computing-pkg, quantum_computing-pkg
@section Package quantum_computing
The @code{quantum_computing} package provides several functions to
simulate quantum computing circuits. The state of a system of @var{n}
qubits is represented by a list of 2^@var{n} complex numbers and an
operator acting on @var{m} qubits is represented by a 2^@var{m} by
2^@var{m} matrix. A hash array @var{qmatrix} is defined with 6 common
one-qubit matrices: the identity, the Pauli matrices, the Hadamard
matrix and the phase matrix.
The major disadvantage compared to a real quantum computer is very slow
computing times even with a few qubits. An advantage is that, unlike a
quantum computer, in this simulator a quantum state can be cloned using
@mrefdot{copylist}
This is an additional package that must be loaded with
@code{load("quantum_computing")} in order to use it.
@opencatbox{Categories:}
@category{Share packages}
@category{Package quantum_computing}
@closecatbox
@node Functions and Variables for Quantum_Computing, , Package quantum_computing, quantum_computing-pkg
@section Functions and Variables for Quantum_Computing
@anchor{binlist}
@deffn {Function} binlist @
@fname{binlist} (@var{k}) @
@fname{binlist} (@var{k}, @var{n})
@code{binlist}(@var{k}), where @var{k} must be a natural number,
returns a list of binary digits 0 or 1 corresponding to the digits of
@var{k} in binary representation. @code{binlist}(@var{k}, @var{n}) does
the same but returns a list of length @var{n}, with leading zeros as
necessary. Notice that for the result to represent a possible state of
@var{m} qubits, @var{n} should be equal to 2^@var{m} and @var{k} should
be between 0 and 2^@var{m}-1.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{binlist2dec}
@deffn {Function} binlist2dec (@var{lst})
Given a list @var{lst} with @var{n} binary digits, it returns the decimal
number it represents.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{CNOT}
@deffn {Function} CNOT (@var{q}, @var{i}, @var{j})
Changes the value of the @var{j}'th qubit, in a state @var{q} of @var{m}
qubits, when the value of the @var{i}'th qubit equals 1. It modifies the
list @var{q} and returns its modified value.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{controlled}
@deffn {Function} controlled (@var{U}, @var{q}, @var{c}, @var{i})
Applies a matrix @var{U}, acting on @var{m} qubits, on qubits @var{i}
through @var{i}+@var{m}-1 of the state @var{q} of @var{n} qubits
(@var{n} > @var{m}), when the value of the @var{c}'th qubit in @var{q}
equals 1. @var{i} should be an integer between 1 and @var{n}+1-@var{m}
and @var{c} should be an integer between 1 and @var{n}, excluding the
qubits to be modified (@var{i} through @var{i}+@var{m}-1).
@var{U} can be one of the indices of the array of common matrices
@var{qmatrix} (see @mref{qmatrix}). The state @var{q} is modified and
shown in the output.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{gate}
@deffn {Function} gate @
@fname{gate} (@var{U}, @var{q}) @
@fname{gate} (@var{U}, @var{q}, @var{i}) @
@fname{gate} (@var{U}, @var{q}, @var{i1}, @dots{}, @var{im})
@var{U} must be a matrix acting on states of @var{m} qubits; @var{q} a
list corresponding to a state of @var{n} qubits (@var{n} >= @var{m});
@var{i} and the @var{m} numbers @var{i1}, @dots{}, @var{im} must be
different integers between 1 and @var{n}.
@code{gate}(@var{U}, @var{q}) applies matrix @var{U} to each qubit of
@var{q}, when @var{m} equals 1, or to the first @var{m} qubits of
@var{q} when @var{m} is bigger than 1.
@code{gate}(@var{U}, @var{q}, @var{i}) applies matrix @var{U} to the
qubits @var{i} through @var{i}+@var{m}-1 of @var{q}.
@code{gate}(@var{U}, @var{q}, @var{i1}, @dots{}, @var{in}) applies
matrix @var{U} to the in the positions @var{i1}, @dots{}, @var{im}.
@var{U} can be one of the indices of the array of common matrices
@var{qmatrix} (see @mref{qmatrix}). The state @var{q} is modified and
shown in the output.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{gate_matrix}
@deffn {Function} gate_matrix @
@fname{gate_matrix} (@var{U}, @var{n}) @
@fname{gate_matrix} (@var{U}, @var{n}, @var{i1}, @dots{}, @var{im})
@var{U} must be a 2 by 2 matrix or one of the indices of the array of
common matrices @var{qmatrix} (see @mref{qmatrix}).
@code{gate_matrix}(@var{U}, @var{n}) returns the matrix corresponding to
the action of @var{U} on each qubit in a state of @var{n} qubits.
@code{gate_matrix} (@var{U}, @var{n}, @var{i1}, @dots{}, @var{im})
returns the matrix corresponding to the action of @var{U} on qubits
@var{i1}, @dots{}, @var{im} of a state of @var{n} qubits, where
@var{i1}, @dots{}, @var{im} are different integers between 1 and
@var{n}.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{linsert}
@deffn {Function} linsert (@var{e}, @var{lst}, @var{p})
Inserts the expression or list @var{e} into the list @var{lst} at position
@var{p}. The list can be empty and @var{p} must be an integer between 1 and
the length of @var{lst} plus 1.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{lreplace}
@deffn {Function} lreplace (@var{e}, @var{lst}, @var{p})
If @var{e} is a list of length @var{n}, the elements in the positions
@var{p}, @var{p}+1, @dots{}, @var{p}+@var{n}-1 of the list @var{lst} are
replaced by @var{e}, or the first elements of @var{e} if the end of
@var{lst} is reached. If @var{e} is an expression, the element in
position @var{p} of list @var{lst} is replaced by that expression.
@var{p} must be an integer between 1 and the length of @var{lst}.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{normalize}
@deffn {Function} normalize (@var{q})
Returns the normalized version of a quantum state given as a list @var{q}.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{qdisplay}
@deffn {Function} qdisplay (@var{q})
Represents the state @var{q} of a system of @var{n} qubits as a linear
combination of the computational states with @var{n} binary digits. It
returns an expression including strings and symbols.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{qmatrix}
@defvr {System variable} qmatrix
This variable is a predefined hash array of two by two matrices with the
standard matrices: identity, Pauli matrices, Hadamard matrix and the
phase matrix. The six possible indices are I, X, Y, Z, H,
S. @var{qmatrix}[I] is the identity matrix, @var{qmatrix}[X] the Pauli x
matrix, @var{qmatrix}[Y] the Pauli y matrix, @var{qmatrix}[Z] the Pauli
z matrix, @var{qmatrix}[H] the Hadamard matrix and @var{qmatrix}[S] the
phase matrix.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end defvr
@anchor{qmeasure}
@deffn {Function} qmeasure @
@fname{qmeasure} (@var{q}) @
@fname{qmeasure} (@var{q}, @var{i1}, @dots{}, @var{im})
Measures the value of one or more qubits in a system of @var{n} qubits
with state @var{q}. The @var{m} positive integers @var{i1}, @dots{},
@var{im} are the positions of the qubits to be measured It requires 1 or
more arguments. The first argument must be the state q. If the only
argument given is @var{q}, all the n qubits will be measured.
It returns a list with the values of the qubits measured (either 0 or
1), in the same order they were requested or in ascending order if the
only argument given was @var{q}. It modifies the list @var{q},
reflecting the collapse of the quantum state after the measurement.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{qubits}
@deffn {Function} qubits @
@fname{qubits} (@var{n}) @
@fname{qubits} (@var{i1}, @dots{}, @var{in})
@code{qubits}(@var{n}) returns a list representing the ground state of a
system of @var{n} qubits.
@code{qubits}(@var{i1}, @dots{}, @var{in}) returns a list with
representing the state of @var{n} qubits with values @var{i1}, @dots{},
@var{in}.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{qswap}
@deffn {Function} qswap (@var{q}, @var{i}, @var{j})
Interchanges the states of qubits @var{i} and @var{j} in the state
@var{q} of a system of several qubits. It modifies the list @var{q} and
returns its modified value.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{Rx}
@deffn {Function} Rx (@var{a})
Returns the 2 by two matrix (acting on one qubit) corresponding to a
rotation of with an angle of @var{a} radians around the x axis.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{Ry}
@deffn {Function} Ry (@var{a})
Returns the 2 by two matrix (acting on one qubit) corresponding to a
rotation of with an angle of @var{a} radians around the y axis.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{Rz}
@deffn {Function} Rz (@var{a})
Returns the 2 by two matrix (acting on one qubit) corresponding to a
rotation of with an angle of @var{a} radians around the z axis.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{tprod}
@deffn {Function} tprod (@var{o1}, @dots{}, @var{on})
Returns the tensor product of the @var{n} matrices or lists @var{o1},
@dots{}, @var{on}.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
@anchor{toffoli}
@deffn {Function} toffoli (@var{q}, (@var{i}, (@var{j}, (@var{k})
Changes the value of the @var{k}'th qubit, in the state @var{q} of
@var{n} qubits, if the values of the @var{i}'th anf @var{j}'th qubits
are equal to 1. It modifies the list @var{q} and returns its new value.
@opencatbox{Categories:}
@category{Package quantum_computing}
@closecatbox
@end deffn
|