File: maxima_112.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (425 lines) | stat: -rw-r--r-- 18,432 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for Sums and Products</title>

<meta name="description" content="Maxima Manual: Functions and Variables for Sums and Products">
<meta name="keywords" content="Maxima Manual: Functions and Variables for Sums and Products">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_111.html#Sums-Products-and-Series" rel="up" title="Sums Products and Series">
<link href="maxima_113.html#Introduction-to-Series" rel="next" title="Introduction to Series">
<link href="maxima_111.html#Sums-Products-and-Series" rel="previous" title="Sums Products and Series">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Sums-and-Products"></a>
<div class="header">
<p>
Next: <a href="maxima_113.html#Introduction-to-Series" accesskey="n" rel="next">Introduction to Series</a>, Previous: <a href="maxima_111.html#Sums-Products-and-Series" accesskey="p" rel="previous">Sums Products and Series</a>, Up: <a href="maxima_111.html#Sums-Products-and-Series" accesskey="u" rel="up">Sums Products and Series</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Sums-and-Products-1"></a>
<h3 class="section">28.1 Functions and Variables for Sums and Products</h3>

<a name="bashindices"></a><a name="Item_003a-Series_002fdeffn_002fbashindices"></a><dl>
<dt><a name="index-bashindices-1"></a>Function: <strong>bashindices</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Transforms the expression <var>expr</var> by giving each summation and product a
unique index.  This gives <code>changevar</code> greater precision when it is working
with summations or products.  The form of the unique index is
<code>j<var>number</var></code>. The quantity <var>number</var> is determined by referring to
<code>gensumnum</code>, which can be changed by the user.  For example,
<code>gensumnum:0$</code> resets it.
</p>



</dd></dl>

<a name="lsum"></a><a name="Item_003a-Series_002fdeffn_002flsum"></a><dl>
<dt><a name="index-lsum-1"></a>Function: <strong>lsum</strong> <em>(<var>expr</var>, <var>x</var>, <var>L</var>)</em></dt>
<dd>
<p>Represents the sum of <var>expr</var> for each element <var>x</var> in <var>L</var>.
A noun form <code>'lsum</code> is returned if the argument <var>L</var> does not evaluate
to a list.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) lsum (x^i, i, [1, 2, 7]);
                            7    2
(%o1)                      x  + x  + x
(%i2) lsum (i^2, i, rootsof (x^3 - 1, x));
</pre><pre class="example">                     ====
                     \      2
(%o2)                 &gt;    i
                     /
                     ====
                                   3
                     i in rootsof(x  - 1, x)
</pre></div>




</dd></dl>


<a name="intosum"></a><a name="Item_003a-Series_002fdeffn_002fintosum"></a><dl>
<dt><a name="index-intosum"></a>Function: <strong>intosum</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Moves multiplicative factors outside a summation to inside.
If the index is used in the
outside expression, then the function tries to find a reasonable
index, the same as it does for <code>sumcontract</code>.  This is essentially the
reverse idea of the <code>outative</code> property of summations, but note that it
does not remove this property, it only bypasses it.
</p>
<p>In some cases, a <code>scanmap (multthru, <var>expr</var>)</code> may be necessary before
the <code>intosum</code>.
</p>



</dd></dl>

<a name="simpproduct"></a><a name="Item_003a-Series_002fdefvr_002fsimpproduct"></a><dl>
<dt><a name="index-simpproduct"></a>Option variable: <strong>simpproduct</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>simpproduct</code> is <code>true</code>, the result of a <code>product</code> is simplified.
This simplification may sometimes be able to produce a closed form.  If
<code>simpproduct</code> is <code>false</code> or if the quoted form <code>'product</code> is used, the
value is a product noun form which is a representation of the pi notation used
in mathematics.
</p>




</dd></dl>

<a name="product"></a><a name="Item_003a-Series_002fdeffn_002fproduct"></a><dl>
<dt><a name="index-product-1"></a>Function: <strong>product</strong> <em>(<var>expr</var>, <var>i</var>, <var>i_0</var>, <var>i_1</var>)</em></dt>
<dd>
<p>Represents a product of the values of <var>expr</var> as
the index <var>i</var> varies from <var>i_0</var> to <var>i_1</var>.
The noun form <code>'product</code> is displayed as an uppercase letter pi.
</p>
<p><code>product</code> evaluates <var>expr</var> and lower and upper limits <var>i_0</var> and
<var>i_1</var>, <code>product</code> quotes (does not evaluate) the index <var>i</var>.
</p>
<p>If the upper and lower limits differ by an integer,
<var>expr</var> is evaluated for each value of the index <var>i</var>,
and the result is an explicit product.
</p>
<p>Otherwise, the range of the index is indefinite.
Some rules are applied to simplify the product.
When the global variable <code>simpproduct</code> is <code>true</code>, additional rules
are applied.  In some cases, simplification yields a result which is not a
product; otherwise, the result is a noun form <code>'product</code>.
</p>
<p>See also <code>`nouns'</code> and <code><a href="maxima_10.html#evflag">evflag</a></code>.
</p>
<p>Examples:
</p>

<div class="example">
<pre class="example">(%i1) product (x + i*(i+1)/2, i, 1, 4);
(%o1)           (x + 1) (x + 3) (x + 6) (x + 10)
(%i2) product (i^2, i, 1, 7);
(%o2)                       25401600
(%i3) product (a[i], i, 1, 7);
(%o3)                 a  a  a  a  a  a  a
                       1  2  3  4  5  6  7
(%i4) product (a(i), i, 1, 7);
(%o4)          a(1) a(2) a(3) a(4) a(5) a(6) a(7)
(%i5) product (a(i), i, 1, n);
                             n
                           /===\
                            ! !
(%o5)                       ! !  a(i)
                            ! !
                           i = 1
(%i6) product (k, k, 1, n);
                               n
                             /===\
                              ! !
(%o6)                         ! !  k
                              ! !
                             k = 1
(%i7) product (k, k, 1, n), simpproduct;
(%o7)                          n!
(%i8) product (integrate (x^k, x, 0, 1), k, 1, n);
                             n
                           /===\
                            ! !    1
(%o8)                       ! !  -----
                            ! !  k + 1
                           k = 1
(%i9) product (if k &lt;= 5 then a^k else b^k, k, 1, 10);
                              15  40
(%o9)                        a   b
</pre></div>




</dd></dl>


<a name="simpsum"></a><a name="Item_003a-Series_002fdefvr_002fsimpsum"></a><dl>
<dt><a name="index-simpsum"></a>Option variable: <strong>simpsum</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>simpsum</code> is <code>true</code>, the result of a <code>sum</code> is simplified.
This simplification may sometimes be able to produce a closed form.  If
<code>simpsum</code> is <code>false</code> or if the quoted form <code>'sum</code> is used, the
value is a sum noun form which is a representation of the sigma notation used
in mathematics.
</p>




</dd></dl>

<a name="sum"></a><a name="Item_003a-Series_002fdeffn_002fsum"></a><dl>
<dt><a name="index-sum-1"></a>Function: <strong>sum</strong> <em>(<var>expr</var>, <var>i</var>, <var>i_0</var>, <var>i_1</var>)</em></dt>
<dd>
<p>Represents a summation of the values of <var>expr</var> as
the index <var>i</var> varies from <var>i_0</var> to <var>i_1</var>.
The noun form <code>'sum</code> is displayed as an uppercase letter sigma.
</p>
<p><code>sum</code> evaluates its summand <var>expr</var> and lower and upper limits <var>i_0</var>
and <var>i_1</var>, <code>sum</code> quotes (does not evaluate) the index <var>i</var>.
</p>
<p>If the upper and lower limits differ by an integer, the summand <var>expr</var> is
evaluated for each value of the summation index <var>i</var>, and the result is an
explicit sum.
</p>
<p>Otherwise, the range of the index is indefinite.
Some rules are applied to simplify the summation.
When the global variable <code>simpsum</code> is <code>true</code>, additional rules are
applied.  In some cases, simplification yields a result which is not a
summation; otherwise, the result is a noun form <code>'sum</code>.
</p>
<p>When the <code>evflag</code> (evaluation flag) <code>cauchysum</code> is <code>true</code>,
a product of summations is expressed as a Cauchy product,
in which the index of the inner summation is a function of the
index of the outer one, rather than varying independently.
</p>
<p>The global variable <code>genindex</code> is the alphabetic prefix used to generate
the next index of summation, when an automatically generated index is needed.
</p>
<p><code>gensumnum</code> is the numeric suffix used to generate the next index of
summation, when an automatically generated index is needed.
When <code>gensumnum</code> is <code>false</code>, an automatically-generated index is only
<code>genindex</code> with no numeric suffix.
</p>
<p>See also <code><a href="#lsum">lsum</a></code>, <code><a href="#sumcontract">sumcontract</a></code>, <code><a href="#intosum">intosum</a></code>,
<code><a href="#bashindices">bashindices</a></code>, <code><a href="maxima_114.html#niceindices">niceindices</a></code>,
<code>`nouns'</code>, <code><a href="maxima_10.html#evflag">evflag</a></code>, and <a href="maxima_261.html#zeilberger_002dpkg">zeilberger-pkg</a>
</p>
<p>Examples:
</p>

<div class="example">
<pre class="example">(%i1) sum (i^2, i, 1, 7);
(%o1)                          140
(%i2) sum (a[i], i, 1, 7);
(%o2)           a  + a  + a  + a  + a  + a  + a
                 7    6    5    4    3    2    1
(%i3) sum (a(i), i, 1, 7);
(%o3)    a(7) + a(6) + a(5) + a(4) + a(3) + a(2) + a(1)
(%i4) sum (a(i), i, 1, n);
                            n
                           ====
                           \
(%o4)                       &gt;    a(i)
                           /
                           ====
                           i = 1
(%i5) sum (2^i + i^2, i, 0, n);
                          n
                         ====
                         \       i    2
(%o5)                     &gt;    (2  + i )
                         /
                         ====
                         i = 0
(%i6) sum (2^i + i^2, i, 0, n), simpsum;
                              3      2
                   n + 1   2 n  + 3 n  + n
(%o6)             2      + --------------- - 1
                                  6
(%i7) sum (1/3^i, i, 1, inf);
                            inf
                            ====
                            \     1
(%o7)                        &gt;    --
                            /      i
                            ====  3
                            i = 1
(%i8) sum (1/3^i, i, 1, inf), simpsum;
                                1
(%o8)                           -
                                2
(%i9) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf);
                              inf
                              ====
                              \     1
(%o9)                      30  &gt;    --
                              /      2
                              ====  i
                              i = 1
(%i10) sum (i^2, i, 1, 4) * sum (1/i^2, i, 1, inf), simpsum;
                                  2
(%o10)                       5 %pi
(%i11) sum (integrate (x^k, x, 0, 1), k, 1, n);
                            n
                           ====
                           \       1
(%o11)                      &gt;    -----
                           /     k + 1
                           ====
                           k = 1
(%i12) sum (if k &lt;= 5 then a^k else b^k, k, 1, 10);
          10    9    8    7    6    5    4    3    2
(%o12)   b   + b  + b  + b  + b  + a  + a  + a  + a  + a
</pre></div>




</dd></dl>


<a name="sumcontract"></a><a name="Item_003a-Series_002fdeffn_002fsumcontract"></a><dl>
<dt><a name="index-sumcontract"></a>Function: <strong>sumcontract</strong> <em>(<var>expr</var>)</em></dt>
<dd>
<p>Combines all sums of an addition that have
upper and lower bounds that differ by constants.  The result is an
expression containing one summation for each set of such summations
added to all appropriate extra terms that had to be extracted to form
this sum.  <code>sumcontract</code> combines all compatible sums and uses one of
the indices from one of the sums if it can, and then try to form a
reasonable index if it cannot use any supplied.
</p>
<p>It may be necessary to do an <code>intosum (<var>expr</var>)</code> before the
<code>sumcontract</code>.
</p>



</dd></dl>

<a name="sumexpand"></a><a name="Item_003a-Series_002fdefvr_002fsumexpand"></a><dl>
<dt><a name="index-sumexpand"></a>Option variable: <strong>sumexpand</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>sumexpand</code> is <code>true</code>, products of sums and
exponentiated sums simplify to nested sums.
</p>
<p>See also <code><a href="maxima_114.html#cauchysum">cauchysum</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) sumexpand: true$
(%i2) sum (f (i), i, 0, m) * sum (g (j), j, 0, n);
</pre><pre class="example">                     m      n
                    ====   ====
                    \      \
(%o2)                &gt;      &gt;     f(i1) g(i2)
                    /      /
                    ====   ====
                    i1 = 0 i2 = 0
</pre><pre class="example">(%i3) sum (f (i), i, 0, m)^2;
                     m      m
                    ====   ====
                    \      \
(%o3)                &gt;      &gt;     f(i3) f(i4)
                    /      /
                    ====   ====
                    i3 = 0 i4 = 0
</pre></div>





</dd></dl>

<a name="Item_003a-Series_002fnode_002fIntroduction-to-Series"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_113.html#Introduction-to-Series" accesskey="n" rel="next">Introduction to Series</a>, Previous: <a href="maxima_111.html#Sums-Products-and-Series" accesskey="p" rel="previous">Sums Products and Series</a>, Up: <a href="maxima_111.html#Sums-Products-and-Series" accesskey="u" rel="up">Sums Products and Series</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>