1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for lapack</title>
<meta name="description" content="Maxima Manual: Functions and Variables for lapack">
<meta name="keywords" content="Maxima Manual: Functions and Variables for lapack">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_201.html#lapack_002dpkg" rel="up" title="lapack-pkg">
<link href="maxima_204.html#lbfgs_002dpkg" rel="next" title="lbfgs-pkg">
<link href="maxima_202.html#Introduction-to-lapack" rel="previous" title="Introduction to lapack">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-lapack"></a>
<div class="header">
<p>
Previous: <a href="maxima_202.html#Introduction-to-lapack" accesskey="p" rel="previous">Introduction to lapack</a>, Up: <a href="maxima_201.html#lapack_002dpkg" accesskey="u" rel="up">lapack-pkg</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-lapack-1"></a>
<h3 class="section">55.2 Functions and Variables for lapack</h3>
<a name="dgeev"></a><a name="Item_003a-lapack_002fdeffn_002fdgeev"></a><dl>
<dt><a name="index-dgeev"></a>Function: <strong>dgeev</strong> <em><br> <tt>dgeev</tt> (<var>A</var>) <br> <tt>dgeev</tt> (<var>A</var>, <var>right_p</var>, <var>left_p</var>)</em></dt>
<dd>
<p>Computes the eigenvalues and, optionally, the eigenvectors of a matrix <var>A</var>.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> must be square (same number of rows and columns).
<var>A</var> might or might not be symmetric.
</p>
<p><code>dgeev(<var>A</var>)</code> computes only the eigenvalues of <var>A</var>.
<code>dgeev(<var>A</var>, <var>right_p</var>, <var>left_p</var>)</code> computes the eigenvalues of <var>A</var>
and the right eigenvectors when <em><var>right_p</var> = <code>true</code></em>
and the left eigenvectors when <em><var>left_p</var> = <code>true</code></em>.
</p>
<p>A list of three items is returned.
The first item is a list of the eigenvalues.
The second item is <code>false</code> or the matrix of right eigenvectors.
The third item is <code>false</code> or the matrix of left eigenvectors.
</p>
<p>The right eigenvector <em>v(j)</em> (the <em>j</em>-th column of the right eigenvector matrix) satisfies
</p>
<p><em>A . v(j) = lambda(j) . v(j)</em>
</p>
<p>where <em>lambda(j)</em> is the corresponding eigenvalue.
The left eigenvector <em>u(j)</em> (the <em>j</em>-th column of the left eigenvector matrix) satisfies
</p>
<p><em>u(j)**H . A = lambda(j) . u(j)**H</em>
</p>
<p>where <em>u(j)**H</em> denotes the conjugate transpose of <em>u(j)</em>.
The Maxima function <code>ctranspose</code> computes the conjugate transpose.
</p>
<p>The computed eigenvectors are normalized to have Euclidean norm
equal to 1, and largest component has imaginary part equal to zero.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) load ("lapack")$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M : matrix ([9.5, 1.75], [3.25, 10.45]);
[ 9.5 1.75 ]
(%o3) [ ]
[ 3.25 10.45 ]
(%i4) dgeev (M);
(%o4) [[7.54331, 12.4067], false, false]
(%i5) [L, v, u] : dgeev (M, true, true);
[ - .666642 - .515792 ]
(%o5) [[7.54331, 12.4067], [ ],
[ .745378 - .856714 ]
[ - .856714 - .745378 ]
[ ]]
[ .515792 - .666642 ]
(%i6) D : apply (diag_matrix, L);
[ 7.54331 0 ]
(%o6) [ ]
[ 0 12.4067 ]
(%i7) M . v - v . D;
[ 0.0 - 8.88178E-16 ]
(%o7) [ ]
[ - 8.88178E-16 0.0 ]
(%i8) transpose (u) . M - D . transpose (u);
[ 0.0 - 4.44089E-16 ]
(%o8) [ ]
[ 0.0 0.0 ]
</pre></div>
</dd></dl>
<a name="dgeqrf"></a><a name="Item_003a-lapack_002fdeffn_002fdgeqrf"></a><dl>
<dt><a name="index-dgeqrf"></a>Function: <strong>dgeqrf</strong> <em>(<var>A</var>)</em></dt>
<dd>
<p>Computes the QR decomposition of the matrix <var>A</var>.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> may or may not have the same number of rows and columns.
</p>
<p>A list of two items is returned.
The first item is the matrix <var>Q</var>, which is a square, orthonormal matrix
which has the same number of rows as <var>A</var>.
The second item is the matrix <var>R</var>, which is the same size as <var>A</var>,
and which has all elements equal to zero below the diagonal.
The product <code><var>Q</var> . <var>R</var></code>, where "." is the noncommutative multiplication operator,
is equal to <var>A</var> (ignoring floating point round-off errors).
</p>
<div class="example">
<pre class="example">(%i1) load ("lapack") $
(%i2) fpprintprec : 6 $
(%i3) M : matrix ([1, -3.2, 8], [-11, 2.7, 5.9]) $
(%i4) [q, r] : dgeqrf (M);
[ - .0905357 .995893 ]
(%o4) [[ ],
[ .995893 .0905357 ]
[ - 11.0454 2.97863 5.15148 ]
[ ]]
[ 0 - 2.94241 8.50131 ]
(%i5) q . r - M;
[ - 7.77156E-16 1.77636E-15 - 8.88178E-16 ]
(%o5) [ ]
[ 0.0 - 1.33227E-15 8.88178E-16 ]
(%i6) mat_norm (%, 1);
(%o6) 3.10862E-15
</pre></div>
</dd></dl>
<a name="dgesv"></a><a name="Item_003a-lapack_002fdeffn_002fdgesv"></a><dl>
<dt><a name="index-dgesv"></a>Function: <strong>dgesv</strong> <em>(<var>A</var>, <var>b</var>)</em></dt>
<dd>
<p>Computes the solution <var>x</var> of the linear equation <em><var>A</var> <var>x</var> = <var>b</var></em>,
where <var>A</var> is a square matrix, and <var>b</var> is a matrix of the same number of rows
as <var>A</var> and any number of columns.
The return value <var>x</var> is the same size as <var>b</var>.
</p>
<p>The elements of <var>A</var> and <var>b</var> must evaluate to real floating point numbers via <code>float</code>;
thus elements may be any numeric type, symbolic numerical constants, or expressions which evaluate to floats.
The elements of <var>x</var> are always floating point numbers.
All arithmetic is carried out as floating point operations.
</p>
<p><code>dgesv</code> computes the solution via the LU decomposition of <var>A</var>.
</p>
<p>Examples:
</p>
<p><code>dgesv</code> computes the solution of the linear equation <em><var>A</var> <var>x</var> = <var>b</var></em>.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([1, -2.5], [0.375, 5]);
[ 1 - 2.5 ]
(%o1) [ ]
[ 0.375 5 ]
(%i2) b : matrix ([1.75], [-0.625]);
[ 1.75 ]
(%o2) [ ]
[ - 0.625 ]
(%i3) x : dgesv (A, b);
[ 1.210526315789474 ]
(%o3) [ ]
[ - 0.215789473684211 ]
(%i4) dlange (inf_norm, b - A.x);
(%o4) 0.0
</pre></div>
<p><var>b</var> is a matrix with the same number of rows as <var>A</var> and any number of columns.
<var>x</var> is the same size as <var>b</var>.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([1, -0.15], [1.82, 2]);
[ 1 - 0.15 ]
(%o1) [ ]
[ 1.82 2 ]
(%i2) b : matrix ([3.7, 1, 8], [-2.3, 5, -3.9]);
[ 3.7 1 8 ]
(%o2) [ ]
[ - 2.3 5 - 3.9 ]
(%i3) x : dgesv (A, b);
[ 3.103827540695117 1.20985481742191 6.781786185657722 ]
(%o3) [ ]
[ -3.974483062032557 1.399032116146062 -8.121425428948527 ]
(%i4) dlange (inf_norm, b - A . x);
(%o4) 1.1102230246251565E-15
</pre></div>
<p>The elements of <var>A</var> and <var>b</var> must evaluate to real floating point numbers.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([5, -%pi], [1b0, 11/17]);
[ 5 - %pi ]
[ ]
(%o1) [ 11 ]
[ 1.0b0 -- ]
[ 17 ]
(%i2) b : matrix ([%e], [sin(1)]);
[ %e ]
(%o2) [ ]
[ sin(1) ]
(%i3) x : dgesv (A, b);
[ 0.690375643155986 ]
(%o3) [ ]
[ 0.233510982552952 ]
(%i4) dlange (inf_norm, b - A . x);
(%o4) 2.220446049250313E-16
</pre></div>
</dd></dl>
<a name="dgesvd"></a><a name="Item_003a-lapack_002fdeffn_002fdgesvd"></a><dl>
<dt><a name="index-dgesvd"></a>Function: <strong>dgesvd</strong> <em><br> <tt>dgesvd</tt> (<var>A</var>) <br> <tt>dgesvd</tt> (<var>A</var>, <var>left_p</var>, <var>right_p</var>)</em></dt>
<dd>
<p>Computes the singular value decomposition (SVD) of a matrix <var>A</var>,
comprising the singular values and, optionally, the left and right singular vectors.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> might or might not be square (same number of rows and columns).
</p>
<p>Let <em>m</em> be the number of rows, and <em>n</em> the number of columns of <var>A</var>.
The singular value decomposition of <var>A</var> comprises three matrices,
<var>U</var>, <var>Sigma</var>, and <var>V^T</var>,
such that
</p>
<p><em><var>A</var> = <var>U</var> . <var>Sigma</var> . <var>V</var>^T</em>
</p>
<p>where <var>U</var> is an <em>m</em>-by-<em>m</em> unitary matrix,
<var>Sigma</var> is an <em>m</em>-by-<em>n</em> diagonal matrix,
and <var>V^T</var> is an <em>n</em>-by-<em>n</em> unitary matrix.
</p>
<p>Let <em>sigma[i]</em> be a diagonal element of <em>Sigma</em>,
that is, <em><var>Sigma</var>[i, i] = <var>sigma</var>[i]</em>.
The elements <em>sigma[i]</em> are the so-called singular values of <var>A</var>;
these are real and nonnegative, and returned in descending order.
The first <em>min(m, n)</em> columns of <var>U</var> and <var>V</var> are
the left and right singular vectors of <var>A</var>.
Note that <code>dgesvd</code> returns the transpose of <var>V</var>, not <var>V</var> itself.
</p>
<p><code>dgesvd(<var>A</var>)</code> computes only the singular values of <var>A</var>.
<code>dgesvd(<var>A</var>, <var>left_p</var>, <var>right_p</var>)</code> computes the singular values of <var>A</var>
and the left singular vectors when <em><var>left_p</var> = <code>true</code></em>
and the right singular vectors when <em><var>right_p</var> = <code>true</code></em>.
</p>
<p>A list of three items is returned.
The first item is a list of the singular values.
The second item is <code>false</code> or the matrix of left singular vectors.
The third item is <code>false</code> or the matrix of right singular vectors.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) load ("lapack")$
(%i2) fpprintprec : 6;
(%o2) 6
(%i3) M: matrix([1, 2, 3], [3.5, 0.5, 8], [-1, 2, -3], [4, 9, 7]);
[ 1 2 3 ]
[ ]
[ 3.5 0.5 8 ]
(%o3) [ ]
[ - 1 2 - 3 ]
[ ]
[ 4 9 7 ]
(%i4) dgesvd (M);
(%o4) [[14.4744, 6.38637, .452547], false, false]
(%i5) [sigma, U, VT] : dgesvd (M, true, true);
(%o5) [[14.4744, 6.38637, .452547],
[ - .256731 .00816168 .959029 - .119523 ]
[ ]
[ - .526456 .672116 - .206236 - .478091 ]
[ ],
[ .107997 - .532278 - .0708315 - 0.83666 ]
[ ]
[ - .803287 - .514659 - .180867 .239046 ]
[ - .374486 - .538209 - .755044 ]
[ ]
[ .130623 - .836799 0.5317 ]]
[ ]
[ - .917986 .100488 .383672 ]
(%i6) m : length (U);
(%o6) 4
(%i7) n : length (VT);
(%o7) 3
(%i8) Sigma:
genmatrix(lambda ([i, j], if i=j then sigma[i] else 0),
m, n);
[ 14.4744 0 0 ]
[ ]
[ 0 6.38637 0 ]
(%o8) [ ]
[ 0 0 .452547 ]
[ ]
[ 0 0 0 ]
(%i9) U . Sigma . VT - M;
[ 1.11022E-15 0.0 1.77636E-15 ]
[ ]
[ 1.33227E-15 1.66533E-15 0.0 ]
(%o9) [ ]
[ - 4.44089E-16 - 8.88178E-16 4.44089E-16 ]
[ ]
[ 8.88178E-16 1.77636E-15 8.88178E-16 ]
(%i10) transpose (U) . U;
[ 1.0 5.55112E-17 2.498E-16 2.77556E-17 ]
[ ]
[ 5.55112E-17 1.0 5.55112E-17 4.16334E-17 ]
(%o10) [ ]
[ 2.498E-16 5.55112E-17 1.0 - 2.08167E-16 ]
[ ]
[ 2.77556E-17 4.16334E-17 - 2.08167E-16 1.0 ]
(%i11) VT . transpose (VT);
[ 1.0 0.0 - 5.55112E-17 ]
[ ]
(%o11) [ 0.0 1.0 5.55112E-17 ]
[ ]
[ - 5.55112E-17 5.55112E-17 1.0 ]
</pre></div>
</dd></dl>
<a name="dlange"></a><a name="zlange"></a><a name="Item_003a-lapack_002fdeffn_002fdlange"></a><dl>
<dt><a name="index-dlange"></a>Function: <strong>dlange</strong> <em>(<var>norm</var>, <var>A</var>)</em></dt>
<dd><a name="Item_003a-lapack_002fdeffn_002fzlange"></a></dd><dt><a name="index-zlange"></a>Function: <strong>zlange</strong> <em>(<var>norm</var>, <var>A</var>)</em></dt>
<dd>
<p>Computes a norm or norm-like function of the matrix <var>A</var>. If
<var>A</var> is a real matrix, use <code>dlange</code>. For a matrix with
complex elements, use <code>zlange</code>.
</p>
<p><code>norm</code> specifies the kind of norm to be computed:
</p><dl compact="compact">
<dt><code>max</code></dt>
<dd><p>Compute <em>max(abs(A(i, j)))</em> where <em>i</em> and <em>j</em> range over
the rows and columns, respectively, of <var>A</var>.
Note that this function is not a proper matrix norm.
</p></dd>
<dt><code>one_norm</code></dt>
<dd><p>Compute the <em>L[1]</em> norm of <var>A</var>,
that is, the maximum of the sum of the absolute value of elements in each column.
</p></dd>
<dt><code>inf_norm</code></dt>
<dd><p>Compute the <em>L[inf]</em> norm of <var>A</var>,
that is, the maximum of the sum of the absolute value of elements in each row.
</p></dd>
<dt><code>frobenius</code></dt>
<dd><p>Compute the Frobenius norm of <var>A</var>,
that is, the square root of the sum of squares of the matrix elements.
</p></dd>
</dl>
</dd></dl>
<a name="dgemm"></a><a name="Item_003a-lapack_002fdeffn_002fdgemm"></a><dl>
<dt><a name="index-dgemm"></a>Function: <strong>dgemm</strong> <em><br> <tt>dgemm</tt> (<var>A</var>, <var>B</var>) <br> <tt>dgemm</tt> (<var>A</var>, <var>B</var>, <var>options</var>)</em></dt>
<dd><p>Compute the product of two matrices and optionally add the product to
a third matrix.
</p>
<p>In the simplest form, <code>dgemm(<var>A</var>, <var>B</var>)</code> computes the
product of the two real matrices, <var>A</var> and <var>B</var>.
</p>
<p>In the second form, <code>dgemm</code> computes the <em><var>alpha</var> *
<var>A</var> * <var>B</var> + <var>beta</var> * <var>C</var></em> where <var>A</var>, <var>B</var>,
<var>C</var> are real matrices of the appropriate sizes and <var>alpha</var> and
<var>beta</var> are real numbers. Optionally, <var>A</var> and/or <var>B</var> can
be transposed before computing the product. The extra parameters are
specified by optional keyword arguments: The keyword arguments are
optional and may be specified in any order. They all take the form
<code>key=val</code>. The keyword arguments are:
</p>
<dl compact="compact">
<dt><code>C</code></dt>
<dd><p>The matrix <var>C</var> that should be added. The default is <code>false</code>,
which means no matrix is added.
</p></dd>
<dt><code>alpha</code></dt>
<dd><p>The product of <var>A</var> and <var>B</var> is multiplied by this value. The
default is 1.
</p></dd>
<dt><code>beta</code></dt>
<dd><p>If a matrix <var>C</var> is given, this value multiplies <var>C</var> before it
is added. The default value is 0, which implies that <var>C</var> is not
added, even if <var>C</var> is given. Hence, be sure to specify a non-zero
value for <var>beta</var>.
</p></dd>
<dt><code>transpose_a</code></dt>
<dd><p>If <code>true</code>, the transpose of <var>A</var> is used instead of <var>A</var>
for the product. The default is <code>false</code>.
</p></dd>
<dt><code>transpose_b</code></dt>
<dd><p>If <code>true</code>, the transpose of <var>B</var> is used instead of <var>B</var>
for the product. The default is <code>false</code>.
</p></dd>
</dl>
<div class="example">
<pre class="example">(%i1) load ("lapack")$
(%i2) A : matrix([1,2,3],[4,5,6],[7,8,9]);
[ 1 2 3 ]
[ ]
(%o2) [ 4 5 6 ]
[ ]
[ 7 8 9 ]
(%i3) B : matrix([-1,-2,-3],[-4,-5,-6],[-7,-8,-9]);
[ - 1 - 2 - 3 ]
[ ]
(%o3) [ - 4 - 5 - 6 ]
[ ]
[ - 7 - 8 - 9 ]
(%i4) C : matrix([3,2,1],[6,5,4],[9,8,7]);
[ 3 2 1 ]
[ ]
(%o4) [ 6 5 4 ]
[ ]
[ 9 8 7 ]
(%i5) dgemm(A,B);
[ - 30.0 - 36.0 - 42.0 ]
[ ]
(%o5) [ - 66.0 - 81.0 - 96.0 ]
[ ]
[ - 102.0 - 126.0 - 150.0 ]
(%i6) A . B;
[ - 30 - 36 - 42 ]
[ ]
(%o6) [ - 66 - 81 - 96 ]
[ ]
[ - 102 - 126 - 150 ]
(%i7) dgemm(A,B,transpose_a=true);
[ - 66.0 - 78.0 - 90.0 ]
[ ]
(%o7) [ - 78.0 - 93.0 - 108.0 ]
[ ]
[ - 90.0 - 108.0 - 126.0 ]
(%i8) transpose(A) . B;
[ - 66 - 78 - 90 ]
[ ]
(%o8) [ - 78 - 93 - 108 ]
[ ]
[ - 90 - 108 - 126 ]
(%i9) dgemm(A,B,c=C,beta=1);
[ - 27.0 - 34.0 - 41.0 ]
[ ]
(%o9) [ - 60.0 - 76.0 - 92.0 ]
[ ]
[ - 93.0 - 118.0 - 143.0 ]
(%i10) A . B + C;
[ - 27 - 34 - 41 ]
[ ]
(%o10) [ - 60 - 76 - 92 ]
[ ]
[ - 93 - 118 - 143 ]
(%i11) dgemm(A,B,c=C,beta=1, alpha=-1);
[ 33.0 38.0 43.0 ]
[ ]
(%o11) [ 72.0 86.0 100.0 ]
[ ]
[ 111.0 134.0 157.0 ]
(%i12) -A . B + C;
[ 33 38 43 ]
[ ]
(%o12) [ 72 86 100 ]
[ ]
[ 111 134 157 ]
</pre></div>
</dd></dl>
<a name="zgeev"></a><a name="Item_003a-lapack_002fdeffn_002fzgeev"></a><dl>
<dt><a name="index-zgeev"></a>Function: <strong>zgeev</strong> <em><br> <tt>zgeev</tt> (<var>A</var>) <br> <tt>zgeev</tt> (<var>A</var>, <var>right_p</var>, <var>left_p</var>)</em></dt>
<dd>
<p>Like <code>dgeev</code>, but the matrix <var>A</var> is complex.
</p>
</dd></dl>
<a name="zheev"></a><a name="Item_003a-lapack_002fdeffn_002fzheev"></a><dl>
<dt><a name="index-zheev"></a>Function: <strong>zheev</strong> <em><br> <tt>zheev</tt> (<var>A</var>) <br> <tt>zheev</tt> (<var>A</var>, <var>eigvec_p</var>)</em></dt>
<dd>
<p>Like <code>dgeev</code>, but the matrix <var>A</var> is assumed to be a square
complex Hermitian matrix. If <var>eigvec_p</var> is <code>true</code>, then the
eigenvectors of the matrix are also computed.
</p>
<p>No check is made that the matrix <var>A</var> is, in fact, Hermitian.
</p>
<p>A list of two items is returned, as in <code>dgeev</code>: a list of
eigenvalues, and <code>false</code> or the matrix of the eigenvectors.
</p>
<p>An example of computing the eigenvalues and then eigenvalues and
eigenvectors of an Hermitian matrix.
</p><div class="example">
<pre class="example">(%i1) load("lapack")$
(%i2) A: matrix(
[9.14 +%i*0.00 , -4.37 -%i*9.22 , -1.98 -%i*1.72 , -8.96 -%i*9.50],
[-4.37 +%i*9.22 , -3.35 +%i*0.00 , 2.25 -%i*9.51 , 2.57 +%i*2.40],
[-1.98 +%i*1.72 , 2.25 +%i*9.51 , -4.82 +%i*0.00 , -3.24 +%i*2.04],
[-8.96 +%i*9.50 , 2.57 -%i*2.40 , -3.24 -%i*2.04 , 8.44 +%i*0.00]);
(%o2)
[ 9.14 (- 9.22 %i) - 4.37 (- 1.72 %i) - 1.98 (- 9.5 %i) - 8.96 ]
[ ]
[ 9.22 %i - 4.37 - 3.35 2.25 - 9.51 %i 2.4 %i + 2.57 ]
[ ]
[ 1.72 %i - 1.98 9.51 %i + 2.25 - 4.82 2.04 %i - 3.24 ]
[ ]
[ 9.5 %i - 8.96 2.57 - 2.4 %i (- 2.04 %i) - 3.24 8.44 ]
(%i3) zheev(A);
(%o3) [[- 16.00474647209473, - 6.764970154793324, 6.665711453507098,
25.51400517338097], false]
(%i4) E:zheev(A,true)$
(%i5) E[1];
(%o5) [- 16.00474647209474, - 6.764970154793325, 6.665711453507101,
25.51400517338096]
(%i6) E[2];
[ 0.2674650533172745 %i + 0.2175453586665017 ]
[ ]
[ 0.002696730886619885 %i + 0.6968836773391712 ]
(%o6) Col 1 = [ ]
[ (- 0.6082406376714117 %i) - 0.01210614292697931 ]
[ ]
[ 0.1593081858095037 ]
[ 0.2644937470667444 %i + 0.4773693349937472 ]
[ ]
[ (- 0.2852389036031621 %i) - 0.1414362742011673 ]
Col 2 = [ ]
[ 0.2654607680986639 %i + 0.4467818117184174 ]
[ ]
[ 0.5750762708542709 ]
[ 0.2810649767305922 %i - 0.1335263928245182 ]
[ ]
[ 0.2866310132869556 %i - 0.4536971347853274 ]
Col 3 = [ ]
[ (- 0.2933684323754295 %i) - 0.4954972425541057 ]
[ ]
[ 0.5325337537576771 ]
[ (- 0.5737316575503476 %i) - 0.3966146799427706 ]
[ ]
[ 0.01826502619021457 %i + 0.3530557704387017 ]
Col 4 = [ ]
[ 0.1673700900085425 %i + 0.01476684746229564 ]
[ ]
[ 0.6002632636961784 ]
</pre></div>
</dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="maxima_202.html#Introduction-to-lapack" accesskey="p" rel="previous">Introduction to lapack</a>, Up: <a href="maxima_201.html#lapack_002dpkg" accesskey="u" rel="up">lapack-pkg</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|