File: maxima_203.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (640 lines) | stat: -rw-r--r-- 30,135 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for lapack</title>

<meta name="description" content="Maxima Manual: Functions and Variables for lapack">
<meta name="keywords" content="Maxima Manual: Functions and Variables for lapack">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_201.html#lapack_002dpkg" rel="up" title="lapack-pkg">
<link href="maxima_204.html#lbfgs_002dpkg" rel="next" title="lbfgs-pkg">
<link href="maxima_202.html#Introduction-to-lapack" rel="previous" title="Introduction to lapack">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-lapack"></a>
<div class="header">
<p>
Previous: <a href="maxima_202.html#Introduction-to-lapack" accesskey="p" rel="previous">Introduction to lapack</a>, Up: <a href="maxima_201.html#lapack_002dpkg" accesskey="u" rel="up">lapack-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-lapack-1"></a>
<h3 class="section">55.2 Functions and Variables for lapack</h3>

<a name="dgeev"></a><a name="Item_003a-lapack_002fdeffn_002fdgeev"></a><dl>
<dt><a name="index-dgeev"></a>Function: <strong>dgeev</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgeev</tt> (<var>A</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgeev</tt> (<var>A</var>, <var>right_p</var>, <var>left_p</var>)</em></dt>
<dd>
<p>Computes the eigenvalues and, optionally, the eigenvectors of a matrix <var>A</var>.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> must be square (same number of rows and columns).
<var>A</var> might or might not be symmetric.
</p>
<p><code>dgeev(<var>A</var>)</code> computes only the eigenvalues of <var>A</var>.
<code>dgeev(<var>A</var>, <var>right_p</var>, <var>left_p</var>)</code> computes the eigenvalues of <var>A</var>
and the right eigenvectors when <em><var>right_p</var> = <code>true</code></em>
and the left eigenvectors when <em><var>left_p</var> = <code>true</code></em>.
</p>
<p>A list of three items is returned.
The first item is a list of the eigenvalues.
The second item is <code>false</code> or the matrix of right eigenvectors.
The third item is <code>false</code> or the matrix of left eigenvectors.
</p>
<p>The right eigenvector <em>v(j)</em> (the <em>j</em>-th column of the right eigenvector matrix) satisfies
</p>
<p><em>A . v(j) = lambda(j) . v(j)</em>
</p>
<p>where <em>lambda(j)</em> is the corresponding eigenvalue.
The left eigenvector <em>u(j)</em> (the <em>j</em>-th column of the left eigenvector matrix) satisfies
</p>
<p><em>u(j)**H . A = lambda(j) . u(j)**H</em>
</p>
<p>where <em>u(j)**H</em> denotes the conjugate transpose of <em>u(j)</em>.
The Maxima function <code>ctranspose</code> computes the conjugate transpose.
</p>
<p>The computed eigenvectors are normalized to have Euclidean norm
equal to 1, and largest component has imaginary part equal to zero.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;lapack&quot;)$
(%i2) fpprintprec : 6;
(%o2)                           6
(%i3) M : matrix ([9.5, 1.75], [3.25, 10.45]);
                         [ 9.5   1.75  ]
(%o3)                    [             ]
                         [ 3.25  10.45 ]
(%i4) dgeev (M);
(%o4)          [[7.54331, 12.4067], false, false]
(%i5) [L, v, u] : dgeev (M, true, true);
                           [ - .666642  - .515792 ]
(%o5) [[7.54331, 12.4067], [                      ], 
                           [  .745378   - .856714 ]
                                        [ - .856714  - .745378 ]
                                        [                      ]]
                                        [  .515792   - .666642 ]
(%i6) D : apply (diag_matrix, L);
                      [ 7.54331     0    ]
(%o6)                 [                  ]
                      [    0     12.4067 ]
(%i7) M . v - v . D;
                [      0.0       - 8.88178E-16 ]
(%o7)           [                              ]
                [ - 8.88178E-16       0.0      ]
(%i8) transpose (u) . M - D . transpose (u);
                     [ 0.0  - 4.44089E-16 ]
(%o8)                [                    ]
                     [ 0.0       0.0      ]
</pre></div>





</dd></dl>

<a name="dgeqrf"></a><a name="Item_003a-lapack_002fdeffn_002fdgeqrf"></a><dl>
<dt><a name="index-dgeqrf"></a>Function: <strong>dgeqrf</strong> <em>(<var>A</var>)</em></dt>
<dd>
<p>Computes the QR decomposition of the matrix <var>A</var>.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> may or may not have the same number of rows and columns.
</p>
<p>A list of two items is returned.
The first item is the matrix <var>Q</var>, which is a square, orthonormal matrix
which has the same number of rows as <var>A</var>.
The second item is the matrix <var>R</var>, which is the same size as <var>A</var>,
and which has all elements equal to zero below the diagonal.
The product <code><var>Q</var> . <var>R</var></code>, where &quot;.&quot; is the noncommutative multiplication operator,
is equal to <var>A</var> (ignoring floating point round-off errors).
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;lapack&quot;) $
(%i2) fpprintprec : 6 $
(%i3) M : matrix ([1, -3.2, 8], [-11, 2.7, 5.9]) $
(%i4) [q, r] : dgeqrf (M);
       [ - .0905357  .995893  ]
(%o4) [[                      ], 
       [  .995893    .0905357 ]
                               [ - 11.0454   2.97863   5.15148 ]
                               [                               ]]
                               [     0      - 2.94241  8.50131 ]
(%i5) q . r - M;
         [ - 7.77156E-16   1.77636E-15   - 8.88178E-16 ]
(%o5)    [                                             ]
         [      0.0       - 1.33227E-15   8.88178E-16  ]
(%i6) mat_norm (%, 1);
(%o6)                      3.10862E-15
</pre></div>





</dd></dl>

<a name="dgesv"></a><a name="Item_003a-lapack_002fdeffn_002fdgesv"></a><dl>
<dt><a name="index-dgesv"></a>Function: <strong>dgesv</strong> <em>(<var>A</var>, <var>b</var>)</em></dt>
<dd>
<p>Computes the solution <var>x</var> of the linear equation <em><var>A</var> <var>x</var> = <var>b</var></em>,
where <var>A</var> is a square matrix, and <var>b</var> is a matrix of the same number of rows
as <var>A</var> and any number of columns.
The return value <var>x</var> is the same size as <var>b</var>.
</p>
<p>The elements of <var>A</var> and <var>b</var> must evaluate to real floating point numbers via <code>float</code>;
thus elements may be any numeric type, symbolic numerical constants, or expressions which evaluate to floats.
The elements of <var>x</var> are always floating point numbers.
All arithmetic is carried out as floating point operations.
</p>
<p><code>dgesv</code> computes the solution via the LU decomposition of <var>A</var>.
</p>
<p>Examples:
</p>
<p><code>dgesv</code> computes the solution of the linear equation <em><var>A</var> <var>x</var> = <var>b</var></em>.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([1, -2.5], [0.375, 5]);
                               [   1    - 2.5 ]
(%o1)                          [              ]
                               [ 0.375    5   ]
(%i2) b : matrix ([1.75], [-0.625]);
                                  [  1.75   ]
(%o2)                             [         ]
                                  [ - 0.625 ]
(%i3) x : dgesv (A, b);
                            [  1.210526315789474  ]
(%o3)                       [                     ]
                            [ - 0.215789473684211 ]
(%i4) dlange (inf_norm, b - A.x);
(%o4)                                 0.0
</pre></div>

<p><var>b</var> is a matrix with the same number of rows as <var>A</var> and any number of columns.
<var>x</var> is the same size as <var>b</var>.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([1, -0.15], [1.82, 2]);
                               [  1    - 0.15 ]
(%o1)                          [              ]
                               [ 1.82    2    ]
(%i2) b : matrix ([3.7, 1, 8], [-2.3, 5, -3.9]);
                              [  3.7   1    8   ]
(%o2)                         [                 ]
                              [ - 2.3  5  - 3.9 ]
(%i3) x : dgesv (A, b);
      [  3.103827540695117  1.20985481742191    6.781786185657722 ]
(%o3) [                                                           ]
      [ -3.974483062032557  1.399032116146062  -8.121425428948527 ]
(%i4) dlange (inf_norm, b - A . x);
(%o4)                       1.1102230246251565E-15
</pre></div>

<p>The elements of <var>A</var> and <var>b</var> must evaluate to real floating point numbers.
</p>
<div class="example">
<pre class="example">(%i1) A : matrix ([5, -%pi], [1b0, 11/17]);
                               [   5    - %pi ]
                               [              ]
(%o1)                          [         11   ]
                               [ 1.0b0   --   ]
                               [         17   ]
(%i2) b : matrix ([%e], [sin(1)]);
                                  [   %e   ]
(%o2)                             [        ]
                                  [ sin(1) ]
(%i3) x : dgesv (A, b);
                             [ 0.690375643155986 ]
(%o3)                        [                   ]
                             [ 0.233510982552952 ]
(%i4) dlange (inf_norm, b - A . x);
(%o4)                        2.220446049250313E-16
</pre></div>






</dd></dl>

<a name="dgesvd"></a><a name="Item_003a-lapack_002fdeffn_002fdgesvd"></a><dl>
<dt><a name="index-dgesvd"></a>Function: <strong>dgesvd</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgesvd</tt> (<var>A</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgesvd</tt> (<var>A</var>, <var>left_p</var>, <var>right_p</var>)</em></dt>
<dd>
<p>Computes the singular value decomposition (SVD) of a matrix <var>A</var>,
comprising the singular values and, optionally, the left and right singular vectors.
All elements of <var>A</var> must be integer or floating point numbers.
<var>A</var> might or might not be square (same number of rows and columns).
</p>
<p>Let <em>m</em> be the number of rows, and <em>n</em> the number of columns of <var>A</var>.
The singular value decomposition of <var>A</var> comprises three matrices,
<var>U</var>, <var>Sigma</var>, and <var>V^T</var>,
such that
</p>
<p><em><var>A</var> = <var>U</var> . <var>Sigma</var> . <var>V</var>^T</em>
</p>
<p>where <var>U</var> is an <em>m</em>-by-<em>m</em> unitary matrix,
<var>Sigma</var> is an <em>m</em>-by-<em>n</em> diagonal matrix,
and <var>V^T</var> is an <em>n</em>-by-<em>n</em> unitary matrix.
</p>
<p>Let <em>sigma[i]</em> be a diagonal element of <em>Sigma</em>,
that is, <em><var>Sigma</var>[i, i] = <var>sigma</var>[i]</em>.
The elements <em>sigma[i]</em> are the so-called singular values of <var>A</var>;
these are real and nonnegative, and returned in descending order.
The first <em>min(m, n)</em> columns of <var>U</var> and <var>V</var> are
the left and right singular vectors of <var>A</var>.
Note that <code>dgesvd</code> returns the transpose of <var>V</var>, not <var>V</var> itself.
</p>
<p><code>dgesvd(<var>A</var>)</code> computes only the singular values of <var>A</var>.
<code>dgesvd(<var>A</var>, <var>left_p</var>, <var>right_p</var>)</code> computes the singular values of <var>A</var>
and the left singular vectors when <em><var>left_p</var> = <code>true</code></em>
and the right singular vectors when <em><var>right_p</var> = <code>true</code></em>.
</p>
<p>A list of three items is returned.
The first item is a list of the singular values.
The second item is <code>false</code> or the matrix of left singular vectors.
The third item is <code>false</code> or the matrix of right singular vectors.
</p>
<p>Example:
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;lapack&quot;)$
(%i2) fpprintprec : 6;
(%o2)                           6
(%i3) M: matrix([1, 2, 3], [3.5, 0.5, 8], [-1, 2, -3], [4, 9, 7]);
                        [  1    2    3  ]
                        [               ]
                        [ 3.5  0.5   8  ]
(%o3)                   [               ]
                        [ - 1   2   - 3 ]
                        [               ]
                        [  4    9    7  ]
(%i4) dgesvd (M);
(%o4)      [[14.4744, 6.38637, .452547], false, false]
(%i5) [sigma, U, VT] : dgesvd (M, true, true);
(%o5) [[14.4744, 6.38637, .452547], 
[ - .256731  .00816168   .959029    - .119523 ]
[                                             ]
[ - .526456   .672116   - .206236   - .478091 ]
[                                             ], 
[  .107997   - .532278  - .0708315  - 0.83666 ]
[                                             ]
[ - .803287  - .514659  - .180867    .239046  ]
[ - .374486  - .538209  - .755044 ]
[                                 ]
[  .130623   - .836799   0.5317   ]]
[                                 ]
[ - .917986   .100488    .383672  ]
(%i6) m : length (U);
(%o6)                           4
(%i7) n : length (VT);
(%o7)                           3
(%i8) Sigma:
        genmatrix(lambda ([i, j], if i=j then sigma[i] else 0),
                  m, n);
                  [ 14.4744     0        0    ]
                  [                           ]
                  [    0     6.38637     0    ]
(%o8)             [                           ]
                  [    0        0     .452547 ]
                  [                           ]
                  [    0        0        0    ]
(%i9) U . Sigma . VT - M;
          [  1.11022E-15        0.0       1.77636E-15 ]
          [                                           ]
          [  1.33227E-15    1.66533E-15       0.0     ]
(%o9)     [                                           ]
          [ - 4.44089E-16  - 8.88178E-16  4.44089E-16 ]
          [                                           ]
          [  8.88178E-16    1.77636E-15   8.88178E-16 ]
(%i10) transpose (U) . U;
       [     1.0      5.55112E-17    2.498E-16     2.77556E-17  ]
       [                                                        ]
       [ 5.55112E-17      1.0       5.55112E-17    4.16334E-17  ]
(%o10) [                                                        ]
       [  2.498E-16   5.55112E-17       1.0       - 2.08167E-16 ]
       [                                                        ]
       [ 2.77556E-17  4.16334E-17  - 2.08167E-16       1.0      ]
(%i11) VT . transpose (VT);
          [      1.0           0.0      - 5.55112E-17 ]
          [                                           ]
(%o11)    [      0.0           1.0       5.55112E-17  ]
          [                                           ]
          [ - 5.55112E-17  5.55112E-17       1.0      ]
</pre></div>





</dd></dl>

<a name="dlange"></a><a name="zlange"></a><a name="Item_003a-lapack_002fdeffn_002fdlange"></a><dl>
<dt><a name="index-dlange"></a>Function: <strong>dlange</strong> <em>(<var>norm</var>, <var>A</var>)</em></dt>
<dd><a name="Item_003a-lapack_002fdeffn_002fzlange"></a></dd><dt><a name="index-zlange"></a>Function: <strong>zlange</strong> <em>(<var>norm</var>, <var>A</var>)</em></dt>
<dd>
<p>Computes a norm or norm-like function of the matrix <var>A</var>.  If
<var>A</var> is a real matrix, use <code>dlange</code>.  For a matrix with
complex elements, use <code>zlange</code>.
</p>
<p><code>norm</code> specifies the kind of norm to be computed:
</p><dl compact="compact">
<dt><code>max</code></dt>
<dd><p>Compute <em>max(abs(A(i, j)))</em> where <em>i</em> and <em>j</em> range over
the rows and columns, respectively, of <var>A</var>.
Note that this function is not a proper matrix norm.
</p></dd>
<dt><code>one_norm</code></dt>
<dd><p>Compute the <em>L[1]</em> norm of <var>A</var>,
that is, the maximum of the sum of the absolute value of elements in each column.
</p></dd>
<dt><code>inf_norm</code></dt>
<dd><p>Compute the <em>L[inf]</em> norm of <var>A</var>,
that is, the maximum of the sum of the absolute value of elements in each row.
</p></dd>
<dt><code>frobenius</code></dt>
<dd><p>Compute the Frobenius norm of <var>A</var>,
that is, the square root of the sum of squares of the matrix elements.
</p></dd>
</dl>





</dd></dl>

<a name="dgemm"></a><a name="Item_003a-lapack_002fdeffn_002fdgemm"></a><dl>
<dt><a name="index-dgemm"></a>Function: <strong>dgemm</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgemm</tt> (<var>A</var>, <var>B</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>dgemm</tt> (<var>A</var>, <var>B</var>, <var>options</var>)</em></dt>
<dd><p>Compute the product of two matrices and optionally add the product to
a third matrix.
</p>
<p>In the simplest form, <code>dgemm(<var>A</var>, <var>B</var>)</code> computes the
product of the two real matrices, <var>A</var> and <var>B</var>.
</p>
<p>In the second form, <code>dgemm</code> computes the <em><var>alpha</var> *
<var>A</var> * <var>B</var> + <var>beta</var> * <var>C</var></em> where <var>A</var>, <var>B</var>,
<var>C</var> are real matrices of the appropriate sizes and <var>alpha</var> and
<var>beta</var> are real numbers.  Optionally, <var>A</var> and/or <var>B</var> can
be transposed before computing the product.  The extra parameters are
specified by optional keyword arguments: The keyword arguments are
optional and may be specified in any order.  They all take the form
<code>key=val</code>.  The keyword arguments are:
</p>
<dl compact="compact">
<dt><code>C</code></dt>
<dd><p>The matrix <var>C</var> that should be added.  The default is <code>false</code>,
which means no matrix is added.
</p></dd>
<dt><code>alpha</code></dt>
<dd><p>The product of <var>A</var> and <var>B</var> is multiplied by this value.  The
default is 1.
</p></dd>
<dt><code>beta</code></dt>
<dd><p>If a matrix <var>C</var> is given, this value multiplies <var>C</var> before it
is added.  The default value is 0, which implies that <var>C</var> is not
added, even if <var>C</var> is given.  Hence, be sure to specify a non-zero
value for <var>beta</var>.
</p></dd>
<dt><code>transpose_a</code></dt>
<dd><p>If <code>true</code>, the transpose of <var>A</var> is used instead of <var>A</var>
for the product.  The default is <code>false</code>.
</p></dd>
<dt><code>transpose_b</code></dt>
<dd><p>If <code>true</code>, the transpose of <var>B</var> is used instead of <var>B</var>
for the product.  The default is <code>false</code>.
</p></dd>
</dl>

<div class="example">
<pre class="example">(%i1) load (&quot;lapack&quot;)$
(%i2) A : matrix([1,2,3],[4,5,6],[7,8,9]);
                                  [ 1  2  3 ]
                                  [         ]
(%o2)                             [ 4  5  6 ]
                                  [         ]
                                  [ 7  8  9 ]
(%i3) B : matrix([-1,-2,-3],[-4,-5,-6],[-7,-8,-9]);
                               [ - 1  - 2  - 3 ]
                               [               ]
(%o3)                          [ - 4  - 5  - 6 ]
                               [               ]
                               [ - 7  - 8  - 9 ]
(%i4) C : matrix([3,2,1],[6,5,4],[9,8,7]);
                                  [ 3  2  1 ]
                                  [         ]
(%o4)                             [ 6  5  4 ]
                                  [         ]
                                  [ 9  8  7 ]
(%i5) dgemm(A,B);
                         [ - 30.0   - 36.0   - 42.0  ]
                         [                           ]
(%o5)                    [ - 66.0   - 81.0   - 96.0  ]
                         [                           ]
                         [ - 102.0  - 126.0  - 150.0 ]
(%i6) A . B;
                            [ - 30   - 36   - 42  ]
                            [                     ]
(%o6)                       [ - 66   - 81   - 96  ]
                            [                     ]
                            [ - 102  - 126  - 150 ]
(%i7) dgemm(A,B,transpose_a=true);
                         [ - 66.0  - 78.0   - 90.0  ]
                         [                          ]
(%o7)                    [ - 78.0  - 93.0   - 108.0 ]
                         [                          ]
                         [ - 90.0  - 108.0  - 126.0 ]
(%i8) transpose(A) . B;
                           [ - 66  - 78   - 90  ]
                           [                    ]
(%o8)                      [ - 78  - 93   - 108 ]
                           [                    ]
                           [ - 90  - 108  - 126 ]
(%i9) dgemm(A,B,c=C,beta=1);
                         [ - 27.0  - 34.0   - 41.0  ]
                         [                          ]
(%o9)                    [ - 60.0  - 76.0   - 92.0  ]
                         [                          ]
                         [ - 93.0  - 118.0  - 143.0 ]
(%i10) A . B + C;
                            [ - 27  - 34   - 41  ]
                            [                    ]
(%o10)                      [ - 60  - 76   - 92  ]
                            [                    ]
                            [ - 93  - 118  - 143 ]
(%i11) dgemm(A,B,c=C,beta=1, alpha=-1);
                            [ 33.0   38.0   43.0  ]
                            [                     ]
(%o11)                      [ 72.0   86.0   100.0 ]
                            [                     ]
                            [ 111.0  134.0  157.0 ]
(%i12) -A . B + C;
                               [ 33   38   43  ]
                               [               ]
(%o12)                         [ 72   86   100 ]
                               [               ]
                               [ 111  134  157 ]

</pre></div>




</dd></dl>

<a name="zgeev"></a><a name="Item_003a-lapack_002fdeffn_002fzgeev"></a><dl>
<dt><a name="index-zgeev"></a>Function: <strong>zgeev</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>zgeev</tt> (<var>A</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>zgeev</tt> (<var>A</var>, <var>right_p</var>, <var>left_p</var>)</em></dt>
<dd>
<p>Like <code>dgeev</code>, but the matrix <var>A</var> is complex.
</p>




</dd></dl>

<a name="zheev"></a><a name="Item_003a-lapack_002fdeffn_002fzheev"></a><dl>
<dt><a name="index-zheev"></a>Function: <strong>zheev</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>zheev</tt> (<var>A</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>zheev</tt> (<var>A</var>, <var>eigvec_p</var>)</em></dt>
<dd>
<p>Like <code>dgeev</code>, but the matrix <var>A</var> is assumed to be a square
complex Hermitian matrix. If <var>eigvec_p</var> is <code>true</code>, then the
eigenvectors of the matrix are also computed.
</p>
<p>No check is made that the matrix <var>A</var> is, in fact, Hermitian.
</p>
<p>A list of two items is returned, as in <code>dgeev</code>: a list of
eigenvalues, and <code>false</code> or the matrix of the eigenvectors.
</p>
<p>An example of computing the eigenvalues and then eigenvalues and
eigenvectors of an Hermitian matrix.
</p><div class="example">
<pre class="example">(%i1) load(&quot;lapack&quot;)$
(%i2) A: matrix(
     [9.14 +%i*0.00 ,   -4.37 -%i*9.22 ,  -1.98 -%i*1.72 ,  -8.96 -%i*9.50],
     [-4.37 +%i*9.22 ,  -3.35 +%i*0.00 ,   2.25 -%i*9.51 ,   2.57 +%i*2.40],
     [-1.98 +%i*1.72 ,   2.25 +%i*9.51 ,  -4.82 +%i*0.00 ,  -3.24 +%i*2.04],
     [-8.96 +%i*9.50 ,   2.57 -%i*2.40 ,  -3.24 -%i*2.04 ,   8.44 +%i*0.00]);
(%o2) 
  [      9.14       (- 9.22 %i) - 4.37  (- 1.72 %i) - 1.98  (- 9.5 %i) - 8.96 ]
  [                                                                           ]
  [ 9.22 %i - 4.37        - 3.35          2.25 - 9.51 %i      2.4 %i + 2.57   ]
  [                                                                           ]
  [ 1.72 %i - 1.98    9.51 %i + 2.25          - 4.82         2.04 %i - 3.24   ]
  [                                                                           ]
  [ 9.5 %i - 8.96     2.57 - 2.4 %i     (- 2.04 %i) - 3.24        8.44        ]
(%i3) zheev(A);
(%o3) [[- 16.00474647209473, - 6.764970154793324, 6.665711453507098, 
                                                     25.51400517338097], false]
(%i4) E:zheev(A,true)$
(%i5) E[1];
(%o5) [- 16.00474647209474, - 6.764970154793325, 6.665711453507101, 
                                                             25.51400517338096]
(%i6) E[2];
               [   0.2674650533172745 %i + 0.2175453586665017    ]
               [                                                 ]
               [  0.002696730886619885 %i + 0.6968836773391712   ]
(%o6)  Col 1 = [                                                 ]
               [ (- 0.6082406376714117 %i) - 0.01210614292697931 ]
               [                                                 ]
               [               0.1593081858095037                ]
         [   0.2644937470667444 %i + 0.4773693349937472   ]
         [                                                ]
         [ (- 0.2852389036031621 %i) - 0.1414362742011673 ]
 Col 2 = [                                                ]
         [   0.2654607680986639 %i + 0.4467818117184174   ]
         [                                                ]
         [               0.5750762708542709               ]
         [   0.2810649767305922 %i - 0.1335263928245182   ]
         [                                                ]
         [   0.2866310132869556 %i - 0.4536971347853274   ]
 Col 3 = [                                                ]
         [ (- 0.2933684323754295 %i) - 0.4954972425541057 ]
         [                                                ]
         [               0.5325337537576771               ]
         [ (- 0.5737316575503476 %i) - 0.3966146799427706 ]
         [                                                ]
         [  0.01826502619021457 %i + 0.3530557704387017   ]
 Col 4 = [                                                ]
         [  0.1673700900085425 %i + 0.01476684746229564   ]
         [                                                ]
         [               0.6002632636961784               ]
</pre></div>





</dd></dl>


<hr>
<div class="header">
<p>
Previous: <a href="maxima_202.html#Introduction-to-lapack" accesskey="p" rel="previous">Introduction to lapack</a>, Up: <a href="maxima_201.html#lapack_002dpkg" accesskey="u" rel="up">lapack-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>