File: maxima_248.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (1146 lines) | stat: -rw-r--r-- 45,794 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for stats</title>

<meta name="description" content="Maxima Manual: Functions and Variables for stats">
<meta name="keywords" content="Maxima Manual: Functions and Variables for stats">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_245.html#stats_002dpkg" rel="up" title="stats-pkg">
<link href="maxima_249.html#Functions-and-Variables-for-special-distributions" rel="next" title="Functions and Variables for special distributions">
<link href="maxima_247.html#Functions-and-Variables-for-inference_005fresult" rel="previous" title="Functions and Variables for inference_result">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-stats"></a>
<div class="header">
<p>
Next: <a href="maxima_249.html#Functions-and-Variables-for-special-distributions" accesskey="n" rel="next">Functions and Variables for special distributions</a>, Previous: <a href="maxima_247.html#Functions-and-Variables-for-inference_005fresult" accesskey="p" rel="previous">Functions and Variables for inference_result</a>, Up: <a href="maxima_245.html#stats_002dpkg" accesskey="u" rel="up">stats-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-stats-1"></a>
<h3 class="section">69.3 Functions and Variables for stats</h3>


<a name="stats_005fnumer"></a><a name="Item_003a-stats_002fdefvr_002fstats_005fnumer"></a><dl>
<dt><a name="index-stats_005fnumer"></a>Option variable: <strong>stats_numer</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>If <code>stats_numer</code> is <code>true</code>, inference statistical functions 
return their results in floating point numbers. If it is <code>false</code>,
results are given in symbolic and rational format.
</p>





</dd></dl>



<a name="test_005fmean"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fmean"></a><dl>
<dt><a name="index-test_005fmean"></a>Function: <strong>test_mean</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_mean</tt> (<var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_mean</tt> (<var>x</var>, <var>options</var> ...)</em></dt>
<dd>
<p>This is the mean <var>t</var>-test. Argument <var>x</var> is a list or a column matrix
containing an one dimensional sample. It also performs an asymptotic test
based on the <i>Central Limit Theorem</i> if option <code>'asymptotic</code> is
<code>true</code>.
</p>
<p>Options:
</p>
<ul>
<li> <code>'mean</code>, default <code>0</code>, is the mean value to be checked.

</li><li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'dev</code>, default <code>'unknown</code>, this is the value of the standard deviation when it is 
known; valid values are: <code>'unknown</code> or a positive expression.

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

</li><li> <code>'asymptotic</code>, default <code>false</code>, indicates whether it performs an exact <var>t</var>-test or
an asymptotic one based on the <i>Central Limit Theorem</i>;
valid values are <code>true</code> and <code>false</code>.

</li></ul>

<p>The output of function <code>test_mean</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'mean_estimate</code>: the sample mean.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: confidence interval for the population mean.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameter(s).

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>Performs an exact <var>t</var>-test with unknown variance. The null hypothesis
is <em>H_0: mean=50</em> against the one sided alternative <em>H_1: mean&lt;50</em>;
according to the results, the <em>p</em>-value is too great, there are no
evidence for rejecting <em>H_0</em>.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) data: [78,64,35,45,45,75,43,74,42,42]$
(%i3) test_mean(data,'conflevel=0.9,'alternative='less,'mean=50);
          |                 MEAN TEST
          |
          |            mean_estimate = 54.3
          |
          |              conf_level = 0.9
          |
          | conf_interval = [minf, 61.51314273502712]
          |
(%o3)     |  method = Exact t-test. Unknown variance.
          |
          | hypotheses = H0: mean = 50 , H1: mean &lt; 50
          |
          |       statistic = .8244705235071678
          |
          |       distribution = [student_t, 9]
          |
          |        p_value = .7845100411786889
</pre></div>

<p>This time Maxima performs an asymptotic test, based on the <i>Central Limit Theorem</i>.
The null hypothesis is <em>H_0: equal(mean, 50)</em> against the two sided alternative <em>H_1: not equal(mean, 50)</em>;
according to the results, the <em>p</em>-value is very small, <em>H_0</em> should be rejected in
favor of the alternative <em>H_1</em>. Note that, as indicated by the <code>Method</code> component,
this procedure should be applied to large samples.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) test_mean([36,118,52,87,35,256,56,178,57,57,89,34,25,98,35,
              98,41,45,198,54,79,63,35,45,44,75,42,75,45,45,
              45,51,123,54,151],
              'asymptotic=true,'mean=50);
          |                       MEAN TEST
          |
          |           mean_estimate = 74.88571428571429
          |
          |                   conf_level = 0.95
          |
          | conf_interval = [57.72848600856194, 92.04294256286663]
          |
(%o2)     |    method = Large sample z-test. Unknown variance.
          |
          |       hypotheses = H0: mean = 50 , H1: mean # 50
          |
          |             statistic = 2.842831192874313
          |
          |             distribution = [normal, 0, 1]
          |
          |             p_value = .004471474652002261
</pre></div>





</dd></dl>







<a name="test_005fmeans_005fdifference"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fmeans_005fdifference"></a><dl>
<dt><a name="index-test_005fmeans_005fdifference"></a>Function: <strong>test_means_difference</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_means_difference</tt> (<var>x1</var>, <var>x2</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_means_difference</tt> (<var>x1</var>, <var>x2</var>, <var>options</var> ...)</em></dt>
<dd>
<p>This is the difference of means <var>t</var>-test for two samples.
Arguments <var>x1</var> and <var>x2</var> are lists or column matrices
containing two independent samples. In case of different unknown variances
(see options <code>'dev1</code>, <code>'dev2</code> and <code>'varequal</code> bellow),
the degrees of freedom are computed by means of the Welch approximation.
It also performs an asymptotic test
based on the <i>Central Limit Theorem</i> if option <code>'asymptotic</code> is
set to <code>true</code>.
</p>
<p>Options:
</p>
<ul>
<li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'dev1</code>, default <code>'unknown</code>, this is the value of the standard deviation
of the <var>x1</var> sample when it is known; valid values are: <code>'unknown</code> or a positive expression.

</li><li> <code>'dev2</code>, default <code>'unknown</code>, this is the value of the standard deviation
of the <var>x2</var> sample when it is known; valid values are: <code>'unknown</code> or a positive expression.

</li><li> <code>'varequal</code>, default <code>false</code>, whether variances should be considered to be equal or not;
this option takes effect only when <code>'dev1</code> and/or <code>'dev2</code> are  <code>'unknown</code>.

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

</li><li> <code>'asymptotic</code>, default <code>false</code>, indicates whether it performs an exact <var>t</var>-test or
an asymptotic one based on the <i>Central Limit Theorem</i>;
valid values are <code>true</code> and <code>false</code>.

</li></ul>

<p>The output of function <code>test_means_difference</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'diff_estimate</code>: the difference of means estimate.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: confidence interval for the difference of means.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameter(s).

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>The equality of means is tested with two small samples <var>x</var> and <var>y</var>,
against the alternative <em>H_1: m_1&gt;m_2</em>, being <em>m_1</em> and <em>m_2</em>
the populations means; variances are unknown and supposed to be different.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_means_difference(x,y,'alternative='greater);
            |              DIFFERENCE OF MEANS TEST
            |
            |         diff_estimate = 20.31999999999999
            |
            |                 conf_level = 0.95
            |
            |    conf_interval = [- .04597417812882298, inf]
            |
(%o4)       |        method = Exact t-test. Welch approx.
            |
            | hypotheses = H0: mean1 = mean2 , H1: mean1 &gt; mean2
            |
            |           statistic = 1.838004300728477
            |
            |    distribution = [student_t, 8.62758740184604]
            |
            |            p_value = .05032746527991905
</pre></div>

<p>The same test as before, but now variances are supposed to be
equal.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: matrix([1.2],[6.9],[38.7],[20.4],[17.2])$
(%i4) test_means_difference(x,y,'alternative='greater,
                                                 'varequal=true);
            |              DIFFERENCE OF MEANS TEST
            |
            |         diff_estimate = 20.31999999999999
            |
            |                 conf_level = 0.95
            |
            |     conf_interval = [- .7722627696897568, inf]
            |
(%o4)       |   method = Exact t-test. Unknown equal variances
            |
            | hypotheses = H0: mean1 = mean2 , H1: mean1 &gt; mean2
            |
            |           statistic = 1.765996124515009
            |
            |           distribution = [student_t, 9]
            |
            |            p_value = .05560320992529344
</pre></div>





</dd></dl>

<a name="test_005fvariance"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fvariance"></a><dl>
<dt><a name="index-test_005fvariance"></a>Function: <strong>test_variance</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_variance</tt> (<var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_variance</tt> (<var>x</var>, <var>options</var>, ...)</em></dt>
<dd>
<p>This is the variance <var>chi^2</var>-test. Argument <var>x</var> is a list or a column matrix
containing an one dimensional sample taken from a normal population.
</p>
<p>Options:
</p>
<ul>
<li> <code>'mean</code>, default <code>'unknown</code>, is the population&rsquo;s mean, when it is known.

</li><li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'variance</code>, default <code>1</code>, this is the variance value (positive) to be checked.

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

</li></ul>

<p>The output of function <code>test_variance</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'var_estimate</code>: the sample variance.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: confidence interval for the population variance.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameter.

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>It is tested whether the variance of a population with unknown mean
is equal to or greater than 200.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [203,229,215,220,223,233,208,228,209]$
(%i3) test_variance(x,'alternative='greater,'variance=200);
             |                  VARIANCE TEST
             |
             |              var_estimate = 110.75
             |
             |                conf_level = 0.95
             |
             |     conf_interval = [57.13433376937479, inf]
             |
(%o3)        | method = Variance Chi-square test. Unknown mean.
             |
             |    hypotheses = H0: var = 200 , H1: var &gt; 200
             |
             |                 statistic = 4.43
             |
             |             distribution = [chi2, 8]
             |
             |           p_value = .8163948512777689
</pre></div>





</dd></dl>







<a name="test_005fvariance_005fratio"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fvariance_005fratio"></a><dl>
<dt><a name="index-test_005fvariance_005fratio"></a>Function: <strong>test_variance_ratio</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_variance_ratio</tt> (<var>x1</var>, <var>x2</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_variance_ratio</tt> (<var>x1</var>, <var>x2</var>, <var>options</var> ...)</em></dt>
<dd>
<p>This is the variance ratio <var>F</var>-test for two normal populations.
Arguments <var>x1</var> and <var>x2</var> are lists or column matrices
containing two independent samples.
</p>
<p>Options:
</p>
<ul>
<li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'mean1</code>, default <code>'unknown</code>, when it is known, this is the mean of
the population from which <var>x1</var> was taken.

</li><li> <code>'mean2</code>, default <code>'unknown</code>, when it is known, this is the mean of
the population from which <var>x2</var> was taken.

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval of the
ratio; it must be an expression which takes a value in (0,1).

</li></ul>

<p>The output of function <code>test_variance_ratio</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'ratio_estimate</code>: the sample variance ratio.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: confidence interval for the variance ratio.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameters.

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>


<p>Examples:
</p>
<p>The equality of the variances of two normal populations is checked
against the alternative that the first is greater than the second.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [20.4,62.5,61.3,44.2,11.1,23.7]$
(%i3) y: [1.2,6.9,38.7,20.4,17.2]$
(%i4) test_variance_ratio(x,y,'alternative='greater);
              |              VARIANCE RATIO TEST
              |
              |       ratio_estimate = 2.316933391522034
              |
              |               conf_level = 0.95
              |
              |    conf_interval = [.3703504689507268, inf]
              |
(%o4)         | method = Variance ratio F-test. Unknown means.
              |
              | hypotheses = H0: var1 = var2 , H1: var1 &gt; var2
              |
              |         statistic = 2.316933391522034
              |
              |            distribution = [f, 5, 4]
              |
              |          p_value = .2179269692254457
</pre></div>





</dd></dl>




<a name="test_005fproportion"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fproportion"></a><dl>
<dt><a name="index-test_005fproportion"></a>Function: <strong>test_proportion</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_proportion</tt> (<var>x</var>, <var>n</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_proportion</tt> (<var>x</var>, <var>n</var>, <var>options</var> ...)</em></dt>
<dd>
<p>Inferences on a proportion. Argument <var>x</var> is the number of successes
in <var>n</var> trials in a Bernoulli experiment with unknown probability.
</p>
<p>Options:
</p>
<ul>
<li> <code>'proportion</code>, default <code>1/2</code>, is the value of the proportion to be checked.

</li><li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

</li><li> <code>'asymptotic</code>, default <code>false</code>, indicates whether it performs an exact test
based on the binomial distribution, or an asymptotic one based on the <i>Central Limit Theorem</i>;
valid values are <code>true</code> and <code>false</code>.

</li><li> <code>'correct</code>, default <code>true</code>, indicates whether Yates correction is applied or not.

</li></ul>

<p>The output of function <code>test_proportion</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'sample_proportion</code>: the sample proportion.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: Wilson confidence interval for the proportion.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameters.

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>Performs an exact test. The null hypothesis
is <em>H_0: p=1/2</em> against the one sided alternative <em>H_1: p&lt;1/2</em>.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) test_proportion(45, 103, alternative = less);
         |            PROPORTION TEST              
         |                                         
         | sample_proportion = .4368932038834951   
         |                                         
         |           conf_level = 0.95             
         |                                         
         | conf_interval = [0, 0.522714149150231]  
         |                                         
(%o2)    |     method = Exact binomial test.       
         |                                         
         | hypotheses = H0: p = 0.5 , H1: p &lt; 0.5  
         |                                         
         |             statistic = 45              
         |                                         
         |  distribution = [binomial, 103, 0.5]    
         |                                         
         |      p_value = .1184509388901454 
</pre></div>

<p>A two sided asymptotic test. Confidence level is 99/100.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) fpprintprec:7$
(%i3) test_proportion(45, 103, 
                  conflevel = 99/100, asymptotic=true);
      |                 PROPORTION TEST                  
      |                                                  
      |           sample_proportion = .43689             
      |                                                  
      |                conf_level = 0.99                 
      |                                                  
      |        conf_interval = [.31422, .56749]          
      |                                                  
(%o3) | method = Asympthotic test with Yates correction.
      |                                                  
      |     hypotheses = H0: p = 0.5 , H1: p # 0.5       
      |                                                  
      |               statistic = .43689                 
      |                                                  
      |      distribution = [normal, 0.5, .048872]       
      |                                                  
      |                p_value = .19662
</pre></div>





</dd></dl>





<a name="test_005fproportions_005fdifference"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fproportions_005fdifference"></a><dl>
<dt><a name="index-test_005fproportions_005fdifference"></a>Function: <strong>test_proportions_difference</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_proportions_difference</tt> (<var>x1</var>, <var>n1</var>, <var>x2</var>, <var>n2</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_proportions_difference</tt> (<var>x1</var>, <var>n1</var>, <var>x2</var>, <var>n2</var>, <var>options</var> &hellip;)</em></dt>
<dd>
<p>Inferences on the difference of two proportions. Argument <var>x1</var> is the number of successes
in <var>n1</var> trials in a Bernoulli experiment in the first population, and <var>x2</var> and <var>n2</var>
are the corresponding values in the second population. Samples are independent and the test
is asymptotic.
</p>
<p>Options:
</p>
<ul>
<li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code> (<code>p1 # p2</code>), <code>'greater</code> (<code>p1 &gt; p2</code>)
and <code>'less</code> (<code>p1 &lt; p2</code>).

</li><li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the confidence interval; it must
be an expression which takes a value in (0,1).

</li><li> <code>'correct</code>, default <code>true</code>, indicates whether Yates correction is applied or not.

</li></ul>

<p>The output of function <code>test_proportions_difference</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'proportions</code>: list with the two sample proportions.

</li><li> <code>'conf_level</code>: confidence level selected by the user.

</li><li> <code>'conf_interval</code>: Confidence interval for the difference of proportions <code>p1 - p2</code>.

</li><li> <code>'method</code>: inference procedure and warning message in case of any of the samples sizes
is less than 10.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameters.

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>A machine produced 10 defective articles in a batch of 250.
After some maintenance work, it produces 4 defective in a batch of 150.
In order to know if the machine has improved, we test the null
hypothesis <code>H0:p1=p2</code>, against the alternative <code>H0:p1&gt;p2</code>,
where <code>p1</code> and <code>p2</code> are the probabilities for one produced
article to be defective before and after maintenance. According to
the p value, there is not enough evidence to accept the alternative.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) fpprintprec:7$
(%i3) test_proportions_difference(10, 250, 4, 150,
                                alternative = greater);
      |       DIFFERENCE OF PROPORTIONS TEST         
      |                                              
      |       proportions = [0.04, .02666667]        
      |                                              
      |              conf_level = 0.95               
      |                                              
      |      conf_interval = [- .02172761, 1]        
      |                                              
(%o3) | method = Asymptotic test. Yates correction.  
      |                                              
      |   hypotheses = H0: p1 = p2 , H1: p1 &gt; p2     
      |                                              
      |            statistic = .01333333             
      |                                              
      |    distribution = [normal, 0, .01898069]     
      |                                              
      |             p_value = .2411936 
</pre></div>

<p>Exact standard deviation of the asymptotic normal
distribution when the data are unknown.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) stats_numer: false$
(%i3) sol: test_proportions_difference(x1,n1,x2,n2)$
(%i4) last(take_inference('distribution,sol));
               1    1                  x2 + x1
              (-- + --) (x2 + x1) (1 - -------)
               n2   n1                 n2 + n1
(%o4)    sqrt(---------------------------------)
                           n2 + n1
</pre></div>





</dd></dl>

<a name="test_005fsign"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fsign"></a><dl>
<dt><a name="index-test_005fsign"></a>Function: <strong>test_sign</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_sign</tt> (<var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_sign</tt> (<var>x</var>, <var>options</var> &hellip;)</em></dt>
<dd>
<p>This is the non parametric sign test for the median of a continuous population.
Argument <var>x</var> is a list or a column matrix containing an one dimensional sample.
</p>
<p>Options:
</p>
<ul>
<li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li><li> <code>'median</code>, default <code>0</code>, is the median value to be checked.

</li></ul>

<p>The output of function <code>test_sign</code> is an <code>inference_result</code> Maxima object
showing the following results:
</p>
<ol>
<li> <code>'med_estimate</code>: the sample median.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameter(s).

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>Checks whether the population from which the sample was taken has median 6, 
against the alternative <em>H_1: median &gt; 6</em>.
</p>
<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [2,0.1,7,1.8,4,2.3,5.6,7.4,5.1,6.1,6]$
(%i3) test_sign(x,'median=6,'alternative='greater);
               |                  SIGN TEST
               |
               |              med_estimate = 5.1
               |
               |      method = Non parametric sign test.
               |
(%o3)          | hypotheses = H0: median = 6 , H1: median &gt; 6
               |
               |                statistic = 7
               |
               |      distribution = [binomial, 10, 0.5]
               |
               |         p_value = .05468749999999989
</pre></div>





</dd></dl>

<a name="test_005fsigned_005frank"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fsigned_005frank"></a><dl>
<dt><a name="index-test_005fsigned_005frank"></a>Function: <strong>test_signed_rank</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_signed_rank</tt> (<var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_signed_rank</tt> (<var>x</var>, <var>options</var> &hellip;)</em></dt>
<dd>
<p>This is the Wilcoxon signed rank test to make inferences about the median of a
continuous population. Argument <var>x</var> is a list or a column matrix
containing an one dimensional sample. Performs normal approximation if the
sample size is greater than 20, or if there are zeroes or ties.
</p>
<p>See also <code>pdf_rank_test</code> and <code>cdf_rank_test</code>
</p>
<p>Options:
</p>
<ul>
<li> <code>'median</code>, default <code>0</code>, is the median value to be checked.

</li><li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li></ul>

<p>The output of function <code>test_signed_rank</code> is an <code>inference_result</code> Maxima object
with the following results:
</p>
<ol>
<li> <code>'med_estimate</code>: the sample median.

</li><li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameter(s).

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>Checks the null hypothesis <em>H_0: median = 15</em> against the 
alternative <em>H_1: median &gt; 15</em>. This is an exact test, since
there are no ties.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [17.1,15.9,13.7,13.4,15.5,17.6]$
(%i3) test_signed_rank(x,median=15,alternative=greater);
                 |             SIGNED RANK TEST
                 |
                 |           med_estimate = 15.7
                 |
                 |           method = Exact test
                 |
(%o3)            | hypotheses = H0: med = 15 , H1: med &gt; 15
                 |
                 |              statistic = 14
                 |
                 |     distribution = [signed_rank, 6]
                 |
                 |            p_value = 0.28125
</pre></div>

<p>Checks the null hypothesis <em>H_0: equal(median, 2.5)</em> against the 
alternative <em>H_1: not equal(median, 2.5)</em>. This is an approximated test,
since there are ties.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) y:[1.9,2.3,2.6,1.9,1.6,3.3,4.2,4,2.4,2.9,1.5,3,2.9,4.2,3.1]$
(%i3) test_signed_rank(y,median=2.5);
             |                 SIGNED RANK TEST
             |
             |                med_estimate = 2.9
             |
             |          method = Asymptotic test. Ties
             |
(%o3)        |    hypotheses = H0: med = 2.5 , H1: med # 2.5
             |
             |                 statistic = 76.5
             |
             | distribution = [normal, 60.5, 17.58195097251724]
             |
             |           p_value = .3628097734643669
</pre></div>





</dd></dl>

<a name="test_005frank_005fsum"></a><a name="Item_003a-stats_002fdeffn_002ftest_005frank_005fsum"></a><dl>
<dt><a name="index-test_005frank_005fsum"></a>Function: <strong>test_rank_sum</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_rank_sum</tt> (<var>x1</var>, <var>x2</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>test_rank_sum</tt> (<var>x1</var>, <var>x2</var>, <var>option</var>)</em></dt>
<dd>
<p>This is the Wilcoxon-Mann-Whitney test for comparing the medians of two
continuous populations. The first two arguments <var>x1</var> and <var>x2</var> are lists
or column matrices with the data of two independent samples. Performs normal
approximation if any of the sample sizes is greater than 10, or if there are ties.
</p>
<p>Option:
</p>
<ul>
<li> <code>'alternative</code>, default <code>'twosided</code>, is the alternative hypothesis;
valid values are: <code>'twosided</code>, <code>'greater</code> and <code>'less</code>.

</li></ul>

<p>The output of function <code>test_rank_sum</code> is an <code>inference_result</code> Maxima object
with the following results:
</p>
<ol>
<li> <code>'method</code>: inference procedure.

</li><li> <code>'hypotheses</code>: null and alternative hypotheses to be tested.

</li><li> <code>'statistic</code>: value of the sample statistic used for testing the null hypothesis.

</li><li> <code>'distribution</code>: distribution of the sample statistic, together with its parameters.

</li><li> <code>'p_value</code>: <em>p</em>-value of the test.

</li></ol>

<p>Examples:
</p>
<p>Checks whether populations have similar medians. Samples sizes
are small and an exact test is made.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x:[12,15,17,38,42,10,23,35,28]$
(%i3) y:[21,18,25,14,52,65,40,43]$
(%i4) test_rank_sum(x,y);
              |                 RANK SUM TEST
              |
              |              method = Exact test
              |
              | hypotheses = H0: med1 = med2 , H1: med1 # med2
(%o4)         |
              |                 statistic = 22
              |
              |        distribution = [rank_sum, 9, 8]
              |
              |          p_value = .1995886466474702
</pre></div>

<p>Now, with greater samples and ties, the procedure makes 
normal approximation. The alternative hypothesis is
<em>H_1: median1 &lt; median2</em>.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x: [39,42,35,13,10,23,15,20,17,27]$
(%i3) y: [20,52,66,19,41,32,44,25,14,39,43,35,19,56,27,15]$
(%i4) test_rank_sum(x,y,'alternative='less);
             |                  RANK SUM TEST
             |
             |          method = Asymptotic test. Ties
             |
             |  hypotheses = H0: med1 = med2 , H1: med1 &lt; med2
(%o4)        |
             |                 statistic = 48.5
             |
             | distribution = [normal, 79.5, 18.95419580097078]
             |
             |           p_value = .05096985666598441
</pre></div>





</dd></dl>







<a name="test_005fnormality"></a><a name="Item_003a-stats_002fdeffn_002ftest_005fnormality"></a><dl>
<dt><a name="index-test_005fnormality"></a>Function: <strong>test_normality</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Shapiro-Wilk test for normality. Argument <var>x</var> is a list of numbers, and sample
size must be greater than 2 and less or equal than 5000, otherwise, function
<code>test_normality</code> signals an error message.
</p>
<p>Reference:
</p>
<p>[1] Algorithm AS R94, Applied Statistics (1995), vol.44, no.4, 547-551
</p>
<p>The output of function <code>test_normality</code> is an <code>inference_result</code> Maxima object
with the following results:
</p>
<ol>
<li> <code>'statistic</code>: value of the <var>W</var> statistic.

</li><li> <code>'p_value</code>: <em>p</em>-value under normal assumption.

</li></ol>

<p>Examples:
</p>
<p>Checks for the normality of a population, based on a sample of size 9.
</p>

<div class="example">
<pre class="example">(%i1) load(&quot;stats&quot;)$
(%i2) x:[12,15,17,38,42,10,23,35,28]$
(%i3) test_normality(x);
                       |      SHAPIRO - WILK TEST
                       |
(%o3)                  | statistic = .9251055695162436
                       |
                       |  p_value = .4361763918860381
</pre></div>





</dd></dl>

<a name="linear_005fregression"></a><a name="Item_003a-stats_002fdeffn_002flinear_005fregression"></a><dl>
<dt><a name="index-linear_005fregression"></a>Function: <strong>linear_regression</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>linear_regression</tt> (<var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>linear_regression</tt> (<var>x</var> <var>option</var>)</em></dt>
<dd>
<p>Multivariate linear regression, 
<em>y_i = b0 + b1*x_1i + b2*x_2i + ... + bk*x_ki + u_i</em>,
where <em>u_i</em> are <em>N(0,sigma)</em> independent random variables.
Argument <var>x</var> must be a matrix with more than one column. The
last column is considered as the responses (<em>y_i</em>).
</p>
<p>Option:
</p>
<ul>
<li> <code>'conflevel</code>, default <code>95/100</code>, confidence level for the
confidence intervals; it must be an expression which takes a value
in (0,1).
</li></ul>

<p>The output of function <code>linear_regression</code> is an 
<code>inference_result</code> Maxima object with the following results:
</p>
<ol>
<li> <code>'b_estimation</code>: regression coefficients estimates.

</li><li> <code>'b_covariances</code>: covariance matrix of the regression 
coefficients estimates.

</li><li> <code>b_conf_int</code>: confidence intervals of the regression coefficients.

</li><li> <code>b_statistics</code>: statistics for testing coefficient.

</li><li> <code>b_p_values</code>: p-values for coefficient tests.

</li><li> <code>b_distribution</code>: probability distribution for coefficient tests.

</li><li> <code>v_estimation</code>: unbiased variance estimator.

</li><li> <code>v_conf_int</code>: variance confidence interval.

</li><li> <code>v_distribution</code>: probability distribution for variance test.

</li><li> <code>residuals</code>: residuals.

</li><li> <code>adc</code>: adjusted determination coefficient.

</li><li> <code>aic</code>: Akaike&rsquo;s information criterion.

</li><li> <code>bic</code>: Bayes&rsquo;s information criterion.

</li></ol>

<p>Only items 1, 4, 5, 6, 7, 8, 9 and 11 above, in this order, 
are shown by default. The rest remain hidden until the user
makes use of functions <code>items_inference</code> and <code>take_inference</code>.
</p>
<p>Example:
</p>
<p>Fitting a linear model to a trivariate sample. The
last column is considered as the responses (<em>y_i</em>).
</p>
<div class="example">
<pre class="example">(%i2) load(&quot;stats&quot;)$
(%i3) X:matrix(
    [58,111,64],[84,131,78],[78,158,83],
    [81,147,88],[82,121,89],[102,165,99],
    [85,174,101],[102,169,102])$
(%i4) fpprintprec: 4$
(%i5) res: linear_regression(X);
             |       LINEAR REGRESSION MODEL         
             |                                       
             | b_estimation = [9.054, .5203, .2397]  
             |                                       
             | b_statistics = [.6051, 2.246, 1.74]   
             |                                       
             | b_p_values = [.5715, .07466, .1423]   
             |                                       
(%o5)        |   b_distribution = [student_t, 5]     
             |                                       
             |         v_estimation = 35.27          
             |                                       
             |     v_conf_int = [13.74, 212.2]       
             |                                       
             |      v_distribution = [chi2, 5]       
             |                                       
             |             adc = .7922               
(%i6) items_inference(res);
(%o6) [b_estimation, b_covariances, b_conf_int, b_statistics, 
b_p_values, b_distribution, v_estimation, v_conf_int, 
v_distribution, residuals, adc, aic, bic]
(%i7) take_inference('b_covariances, res);
                  [  223.9    - 1.12   - .8532  ]
                  [                             ]
(%o7)             [ - 1.12    .05367   - .02305 ]
                  [                             ]
                  [ - .8532  - .02305   .01898  ]
(%i8) take_inference('bic, res);
(%o8)                          30.98
(%i9) load(&quot;draw&quot;)$
(%i10) draw2d(
    points_joined = true,
    grid = true,
    points(take_inference('residuals, res)) )$
</pre></div>






</dd></dl>






<a name="Item_003a-stats_002fnode_002fFunctions-and-Variables-for-special-distributions"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_249.html#Functions-and-Variables-for-special-distributions" accesskey="n" rel="next">Functions and Variables for special distributions</a>, Previous: <a href="maxima_247.html#Functions-and-Variables-for-inference_005fresult" accesskey="p" rel="previous">Functions and Variables for inference_result</a>, Up: <a href="maxima_245.html#stats_002dpkg" accesskey="u" rel="up">stats-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>