File: maxima_260.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (564 lines) | stat: -rw-r--r-- 25,628 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for Units</title>

<meta name="description" content="Maxima Manual: Functions and Variables for Units">
<meta name="keywords" content="Maxima Manual: Functions and Variables for Units">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_258.html#unit_002dpkg" rel="up" title="unit-pkg">
<link href="maxima_261.html#zeilberger_002dpkg" rel="next" title="zeilberger-pkg">
<link href="maxima_259.html#Introduction-to-Units" rel="previous" title="Introduction to Units">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Units"></a>
<div class="header">
<p>
Previous: <a href="maxima_259.html#Introduction-to-Units" accesskey="p" rel="previous">Introduction to Units</a>, Up: <a href="maxima_258.html#unit_002dpkg" accesskey="u" rel="up">unit-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Units-1"></a>
<h3 class="section">72.2 Functions and Variables for Units</h3>

<a name="setunits"></a><a name="Item_003a-unit_002fdeffn_002fsetunits"></a><dl>
<dt><a name="index-setunits"></a>Function: <strong>setunits</strong> <em>(<var>list</var>)</em></dt>
<dd><p>By default, the <em>unit</em> package does not use any derived dimensions, but will
convert all units to the seven fundamental dimensions using MKS units.
</p><div class="example">
<pre class="example">(%i2) N;
                                     kg m
(%o2)                                ----
                                       2
                                      s
</pre><pre class="example">(%i3) dyn;
                                   1      kg m
(%o3)                           (------) (----)
                                 100000     2
                                           s
</pre><pre class="example">(%i4) g;
                                    1
(%o4)                             (----) (kg)
                                   1000
</pre><pre class="example">(%i5) centigram*inch/minutes^2;
                                  127        kg m
(%o5)                       (-------------) (----)
                             1800000000000     2
                                              s
</pre></div>

<p>In some cases this is the desired behavior.  If the user wishes to use other
units, this is achieved with the <code>setunits</code> command:
</p><div class="example">
<pre class="example">(%i6) setunits([centigram,inch,minute]);
(%o6)                                done
</pre><pre class="example">(%i7) N;
                            1800000000000   %in cg
(%o7)                      (-------------) (------)
                                 127            2
                                            %min
</pre><pre class="example">(%i8) dyn;
                               18000000   %in cg
(%o8)                         (--------) (------)
                                 127          2
                                          %min
</pre><pre class="example">(%i9) g;
(%o9)                             (100) (cg)
</pre><pre class="example">(%i10) centigram*inch/minutes^2;
                                    %in cg
(%o10)                              ------
                                        2
                                    %min
</pre></div>

<p>The setting of units is quite flexible.  For example, if we want to
get back to kilograms, meters, and seconds as defaults for those
dimensions we can do:
</p><div class="example">
<pre class="example">(%i11) setunits([kg,m,s]);
(%o11)                               done
</pre><pre class="example">(%i12) centigram*inch/minutes^2;
                                  127        kg m
(%o12)                      (-------------) (----)
                             1800000000000     2
                                              s
</pre></div>

<p>Derived units are also handled by this command:
</p><div class="example">
<pre class="example">(%i17) setunits(N);
(%o17)                               done
</pre><pre class="example">(%i18) N;
(%o18)                                 N
</pre><pre class="example">(%i19) dyn;
                                    1
(%o19)                           (------) (N)
                                  100000
</pre><pre class="example">(%i20) kg*m/s^2;
(%o20)                                 N
</pre><pre class="example">(%i21) centigram*inch/minutes^2;
                                    127
(%o21)                        (-------------) (N)
                               1800000000000
</pre></div>

<p>Notice that the <em>unit</em> package recognized the non MKS combination
of mass, length, and inverse time squared as a force, and converted it
to Newtons.  This is how Maxima works in general.  If, for example, we
prefer dyne to Newtons, we simply do the following:
</p><div class="example">
<pre class="example">(%i22) setunits(dyn);
(%o22)                               done
</pre><pre class="example">(%i23) kg*m/s^2;
(%o23)                          (100000) (dyn)
</pre><pre class="example">(%i24) centigram*inch/minutes^2;
                                  127
(%o24)                         (--------) (dyn)
                                18000000
</pre></div>

<p>To discontinue simplifying to any force, we use the uforget command:
</p><div class="example">
<pre class="example">(%i26) uforget(dyn);
(%o26)                               false
</pre><pre class="example">(%i27) kg*m/s^2;
                                     kg m
(%o27)                               ----
                                       2
                                      s
</pre><pre class="example">(%i28) centigram*inch/minutes^2;
                                  127        kg m
(%o28)                      (-------------) (----)
                             1800000000000     2
                                              s
</pre></div>
<p>This would have worked equally well with <code>uforget(N)</code> or
<code>uforget(%force)</code>.
</p>
<p>See also <code><a href="#uforget">uforget</a></code>. To use this function write first <code>load(&quot;unit&quot;)</code>.
</p>




</dd></dl>

<a name="uforget"></a><a name="Item_003a-unit_002fdeffn_002fuforget"></a><dl>
<dt><a name="index-uforget"></a>Function: <strong>uforget</strong> <em>(<var>list</var>)</em></dt>
<dd><p>By default, the <em>unit</em> package converts all units to the
seven fundamental dimensions using MKS units. This behavior can
be changed with the <code>setunits</code> command. After that, the
user can restore the default behavior for a particular dimension
by means of the <code>uforget</code> command:
</p><div class="example">
<pre class="example">(%i13) setunits([centigram,inch,minute]);
(%o13)                               done
</pre><pre class="example">(%i14) centigram*inch/minutes^2;
                                    %in cg
(%o14)                              ------
                                        2
                                    %min
</pre><pre class="example">(%i15) uforget([cg,%in,%min]);
(%o15)                      [false, false, false]
</pre><pre class="example">(%i16) centigram*inch/minutes^2;
                                  127        kg m
(%o16)                      (-------------) (----)
                             1800000000000     2
                                              s
</pre></div>

<p><code>uforget</code> operates on dimensions,
not units, so any unit of a particular dimension will work.  The
dimension itself is also a legal argument.
</p>
<p>See also <code><a href="#setunits">setunits</a></code>. To use this function write first <code>load(&quot;unit&quot;)</code>.
</p>




</dd></dl>

<a name="convert"></a><a name="Item_003a-unit_002fdeffn_002fconvert"></a><dl>
<dt><a name="index-convert"></a>Function: <strong>convert</strong> <em>(<var>expr</var>, <var>list</var>)</em></dt>
<dd><p>When resetting the global environment is overkill, there is the <code>convert</code>
command, which allows one time conversions.  It can accept either a single
argument or a list of units to use in conversion.  When a convert operation is
done, the normal global evaluation system is bypassed, in order to avoid the
desired result being converted again.  As a consequence, for inexact calculations
&quot;rat&quot; warnings will be visible if the global environment controlling this behavior
(<code>ratprint</code>) is true.  This is also useful for spot-checking the
accuracy of a global conversion.  Another feature is <code>convert</code> will allow a
user to do Base Dimension conversions even if the global environment is set to
simplify to a Derived Dimension.
</p>
<div class="example">
<pre class="example">(%i2) kg*m/s^2;
                                     kg m
(%o2)                                ----
                                       2
                                      s
</pre><pre class="example">(%i3) convert(kg*m/s^2,[g,km,s]);
                                     g km
(%o3)                                ----
                                       2
                                      s
</pre><pre class="example">(%i4) convert(kg*m/s^2,[g,inch,minute]);

`rat' replaced 39.37007874015748 by 5000/127 = 39.37007874015748
                              18000000000   %in g
(%o4)                        (-----------) (-----)
                                  127           2
                                            %min
</pre><pre class="example">(%i5) convert(kg*m/s^2,[N]);
(%o5)                                  N
</pre><pre class="example">(%i6) convert(kg*m^2/s^2,[N]);
(%o6)                                 m N
</pre><pre class="example">(%i7) setunits([N,J]);
(%o7)                                done
</pre><pre class="example">(%i8) convert(kg*m^2/s^2,[N]);
(%o8)                                 m N
</pre><pre class="example">(%i9) convert(kg*m^2/s^2,[N,inch]);

`rat' replaced 39.37007874015748 by 5000/127 = 39.37007874015748
                                 5000
(%o9)                           (----) (%in N)
                                 127
</pre><pre class="example">(%i10) convert(kg*m^2/s^2,[J]);
(%o10)                                 J
</pre><pre class="example">(%i11) kg*m^2/s^2;
(%o11)                                 J
</pre><pre class="example">(%i12) setunits([g,inch,s]);
(%o12)                               done
</pre><pre class="example">(%i13) kg*m/s^2;
(%o13)                                 N
</pre><pre class="example">(%i14) uforget(N);
(%o14)                               false
</pre><pre class="example">(%i15) kg*m/s^2;
                                5000000   %in g
(%o15)                         (-------) (-----)
                                  127       2
                                           s
</pre><pre class="example">(%i16) convert(kg*m/s^2,[g,inch,s]);

`rat' replaced 39.37007874015748 by 5000/127 = 39.37007874015748
                                5000000   %in g
(%o16)                         (-------) (-----)
                                  127       2
                                           s
</pre></div>

<p>See also <code><a href="#setunits">setunits</a></code> and <code><a href="#uforget">uforget</a></code>. To use this function write first <code>load(&quot;unit&quot;)</code>.
</p>




</dd></dl>


<a name="usersetunits"></a><a name="Item_003a-unit_002fdefvr_002fusersetunits"></a><dl>
<dt><a name="index-usersetunits"></a>Optional variable: <strong>usersetunits</strong></dt>
<dd><p>Default value: none
</p>
<p>If a user wishes to have a default unit behavior other than that described,
they can make use of <em>maxima-init.mac</em> and the <em>usersetunits</em>
variable.  The <em>unit</em> package will check on startup to see if this variable
has been assigned a list.  If it has, it will use setunits on that list and take
the units from that list to be defaults.  <code>uforget</code> will revert to the behavior
defined by usersetunits over its own defaults.  For example, if we have a
<em>maxima-init.mac</em> file containing:
</p><div class="example">
<pre class="example">usersetunits : [N,J];
</pre></div>
<p>we would see the following behavior:
</p><div class="example">
<pre class="example">(%i1) load(&quot;unit&quot;)$
*******************************************************************
*                       Units version 0.50                        *
*          Definitions based on the NIST Reference on             *
*              Constants, Units, and Uncertainty                  *
*       Conversion factors from various sources including         *
*                   NIST and the GNU units package                *
*******************************************************************

Redefining necessary functions...
WARNING: DEFUN/DEFMACRO: redefining function
 TOPLEVEL-MACSYMA-EVAL ...
WARNING: DEFUN/DEFMACRO: redefining function MSETCHK ...
WARNING: DEFUN/DEFMACRO: redefining function KILL1 ...
WARNING: DEFUN/DEFMACRO: redefining function NFORMAT ...
Initializing unit arrays...
Done.
User defaults found...
User defaults initialized.
</pre><pre class="example">(%i2) kg*m/s^2;
(%o2)                                  N
</pre><pre class="example">(%i3) kg*m^2/s^2;
(%o3)                                  J
</pre><pre class="example">(%i4) kg*m^3/s^2;
(%o4)                                 J m
</pre><pre class="example">(%i5) kg*m*km/s^2;
(%o5)                             (1000) (J)
</pre><pre class="example">(%i6) setunits([dyn,eV]);
(%o6)                                done
</pre><pre class="example">(%i7) kg*m/s^2;
(%o7)                           (100000) (dyn)
</pre><pre class="example">(%i8) kg*m^2/s^2;
(%o8)                     (6241509596477042688) (eV)
</pre><pre class="example">(%i9) kg*m^3/s^2;
(%o9)                    (6241509596477042688) (eV m)
</pre><pre class="example">(%i10) kg*m*km/s^2;
(%o10)                   (6241509596477042688000) (eV)
</pre><pre class="example">(%i11) uforget([dyn,eV]);
(%o11)                           [false, false]
</pre><pre class="example">(%i12) kg*m/s^2;
(%o12)                                 N
</pre><pre class="example">(%i13) kg*m^2/s^2;
(%o13)                                 J
</pre><pre class="example">(%i14) kg*m^3/s^2;
(%o14)                                J m
</pre><pre class="example">(%i15) kg*m*km/s^2;
(%o15)                            (1000) (J)
</pre></div>
<p>Without <code>usersetunits</code>, the initial inputs would have been converted
to MKS, and uforget would have resulted in a return to MKS rules.  Instead,
the user preferences are respected in both cases.  Notice these can still
be overridden if desired.  To completely eliminate this simplification - i.e.
to have the user defaults reset to factory defaults - the <code>dontusedimension</code>
command can be used.  <code>uforget</code> can restore user settings again, but
only if <code>usedimension</code> frees it for use.  Alternately,
<code>kill(usersetunits)</code> will completely remove all knowledge of the user defaults
from the session.  Here are some examples of how these various options work.
</p><div class="example">
<pre class="example">(%i2) kg*m/s^2;
(%o2)                                  N
</pre><pre class="example">(%i3) kg*m^2/s^2;
(%o3)                                  J
</pre><pre class="example">(%i4) setunits([dyn,eV]);
(%o4)                                done
</pre><pre class="example">(%i5) kg*m/s^2;
(%o5)                           (100000) (dyn)
</pre><pre class="example">(%i6) kg*m^2/s^2;
(%o6)                     (6241509596477042688) (eV)
</pre><pre class="example">(%i7) uforget([dyn,eV]);
(%o7)                          [false, false]
</pre><pre class="example">(%i8) kg*m/s^2;
(%o8)                                  N
</pre><pre class="example">(%i9) kg*m^2/s^2;
(%o9)                                  J
</pre><pre class="example">(%i10) dontusedimension(N);
(%o10)                             [%force]
</pre><pre class="example">(%i11) dontusedimension(J);
(%o11)                         [%energy, %force]
</pre><pre class="example">(%i12) kg*m/s^2;
                                     kg m
(%o12)                               ----
                                       2
                                      s
</pre><pre class="example">(%i13) kg*m^2/s^2;
                                         2
                                     kg m
(%o13)                               -----
                                       2
                                      s
</pre><pre class="example">(%i14) setunits([dyn,eV]);
(%o14)                               done
</pre><pre class="example">(%i15) kg*m/s^2;
                                     kg m
(%o15)                               ----
                                       2
                                      s
</pre><pre class="example">(%i16) kg*m^2/s^2;
                                         2
                                     kg m
(%o16)                               -----
                                       2
                                      s
</pre><pre class="example">(%i17) uforget([dyn,eV]);
(%o17)                         [false, false]
</pre><pre class="example">(%i18) kg*m/s^2;
                                     kg m
(%o18)                               ----
                                       2
                                      s
</pre><pre class="example">(%i19) kg*m^2/s^2;
                                         2
                                     kg m
(%o19)                               -----
                                       2
                                      s
</pre><pre class="example">(%i20) usedimension(N);
Done.  To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o20)                               true
</pre><pre class="example">(%i21) usedimension(J);
Done.  To have Maxima simplify to this dimension, use
setunits([unit]) to select a unit.
(%o21)                               true
</pre><pre class="example">(%i22) kg*m/s^2;
                                     kg m
(%o22)                               ----
                                       2
                                      s
</pre><pre class="example">(%i23) kg*m^2/s^2;
                                         2
                                     kg m
(%o23)                               -----
                                       2
                                      s
</pre><pre class="example">(%i24) setunits([dyn,eV]);
(%o24)                               done
</pre><pre class="example">(%i25) kg*m/s^2;
(%o25)                          (100000) (dyn)
</pre><pre class="example">(%i26) kg*m^2/s^2;
(%o26)                    (6241509596477042688) (eV)
</pre><pre class="example">(%i27) uforget([dyn,eV]);
(%o27)                           [false, false]
</pre><pre class="example">(%i28) kg*m/s^2;
(%o28)                                 N
</pre><pre class="example">(%i29) kg*m^2/s^2;
(%o29)                                 J
</pre><pre class="example">(%i30) kill(usersetunits);
(%o30)                               done
</pre><pre class="example">(%i31) uforget([dyn,eV]);
(%o31)                          [false, false]
</pre><pre class="example">(%i32) kg*m/s^2;
                                     kg m
(%o32)                               ----
                                       2
                                      s
</pre><pre class="example">(%i33) kg*m^2/s^2;
                                         2
                                     kg m
(%o33)                               -----
                                       2
                                      s
</pre></div>
<p>Unfortunately this wide variety of options is a little confusing at first,
but once the user grows used to them they should find they have very full
control over their working environment.
</p>





</dd></dl>


<a name="metricexpandall"></a><a name="Item_003a-unit_002fdeffn_002fmetricexpandall"></a><dl>
<dt><a name="index-metricexpandall"></a>Function: <strong>metricexpandall</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Rebuilds global unit lists automatically creating all desired metric units.
<var>x</var> is a numerical argument which is used to specify how many metric
prefixes the user wishes defined.  The arguments are as follows, with each
higher number defining all lower numbers&rsquo; units:
</p><div class="example">
<pre class="example">           0 - none. Only base units
           1 - kilo, centi, milli
(default)  2 - giga, mega, kilo, hecto, deka, deci, centi, milli,
               micro, nano
           3 - peta, tera, giga, mega, kilo, hecto, deka, deci,
               centi, milli, micro, nano, pico, femto
           4 - all
</pre></div>
<p>Normally, Maxima will not define the full expansion since this results in a
very large number of units, but <code>metricexpandall</code> can be used to
rebuild the list in a more or less complete fashion. The relevant variable
in the <em>unit.mac</em> file is <var>%unitexpand</var>.
</p>




</dd></dl>

<a name="Item_003a-unit_002fdefvr_002f_0025unitexpand"></a><dl>
<dt><a name="index-_0025unitexpand"></a>Variable: <strong>%unitexpand</strong></dt>
<dd><p>Default value: <code>2</code>
</p>
<p>This is the value supplied to <code>metricexpandall</code> during the initial loading
of <em>unit</em>.
</p>




</dd></dl>





<hr>
<div class="header">
<p>
Previous: <a href="maxima_259.html#Introduction-to-Units" accesskey="p" rel="previous">Introduction to Units</a>, Up: <a href="maxima_258.html#unit_002dpkg" accesskey="u" rel="up">unit-pkg</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>