1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for Integration</title>
<meta name="description" content="Maxima Manual: Functions and Variables for Integration">
<meta name="keywords" content="Maxima Manual: Functions and Variables for Integration">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_73.html#Integration" rel="up" title="Integration">
<link href="maxima_76.html#Introduction-to-QUADPACK" rel="next" title="Introduction to QUADPACK">
<link href="maxima_74.html#Introduction-to-Integration" rel="previous" title="Introduction to Integration">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-Integration"></a>
<div class="header">
<p>
Next: <a href="maxima_76.html#Introduction-to-QUADPACK" accesskey="n" rel="next">Introduction to QUADPACK</a>, Previous: <a href="maxima_74.html#Introduction-to-Integration" accesskey="p" rel="previous">Introduction to Integration</a>, Up: <a href="maxima_73.html#Integration" accesskey="u" rel="up">Integration</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-Integration-1"></a>
<h3 class="section">18.2 Functions and Variables for Integration</h3>
<a name="changevar"></a><a name="Item_003a-Integration_002fdeffn_002fchangevar"></a><dl>
<dt><a name="index-changevar"></a>Function: <strong>changevar</strong> <em>(<var>expr</var>, <var>f(x,y)</var>, <var>y</var>, <var>x</var>)</em></dt>
<dd>
<p>Makes the change of variable given by <code><var>f(x,y)</var> = 0</code> in all integrals
occurring in <var>expr</var> with integration with respect to <var>x</var>.
The new variable is <var>y</var>.
</p>
<p>The change of variable can also be written <code><var>f(x)</var> = <var>g(y)</var></code>.
</p>
<div class="example">
<pre class="example">(%i1) assume(a > 0)$
</pre><pre class="example">(%i2) 'integrate (%e**sqrt(a*y), y, 0, 4);
4
/
[ sqrt(a) sqrt(y)
(%o2) I %e dy
]
/
0
</pre><pre class="example">(%i3) changevar (%, y-z^2/a, z, y);
0
/
[ abs(z)
2 I z %e dz
]
/
- 2 sqrt(a)
(%o3) - ----------------------------
a
</pre></div>
<p>An expression containing a noun form, such as the instances of <code>'integrate</code>
above, may be evaluated by <code>ev</code> with the <code>nouns</code> flag.
For example, the expression returned by <code>changevar</code> above may be evaluated
by <code>ev (%o3, nouns)</code>.
</p>
<p><code>changevar</code> may also be used to make changes in the indices of a sum or
product. However, it must be realized that when a change is made in a
sum or product, this change must be a shift, i.e., <code>i = j+ ...</code>, not a
higher degree function. E.g.,
</p>
<div class="example">
<pre class="example">(%i4) sum (a[i]*x^(i-2), i, 0, inf);
inf
====
\ i - 2
(%o4) > a x
/ i
====
i = 0
</pre><pre class="example">(%i5) changevar (%, i-2-n, n, i);
inf
====
\ n
(%o5) > a x
/ n + 2
====
n = - 2
</pre></div>
</dd></dl>
<a name="dblint"></a><a name="Item_003a-Integration_002fdeffn_002fdblint"></a><dl>
<dt><a name="index-dblint"></a>Function: <strong>dblint</strong> <em>(<var>f</var>, <var>r</var>, <var>s</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>A double-integral routine which was written in
top-level Maxima and then translated and compiled to machine code.
Use <code>load ("dblint")</code> to access this package. It uses the Simpson’s rule
method in both the x and y directions to calculate
</p>
<div class="example">
<pre class="example">/b /s(x)
| |
| | f(x,y) dy dx
| |
/a /r(x)
</pre></div>
<p>The function <var>f</var> must be a translated or compiled function of two variables,
and <var>r</var> and <var>s</var> must each be a translated or compiled function of one
variable, while <var>a</var> and <var>b</var> must be floating point numbers. The routine
has two global variables which determine the number of divisions of the x and y
intervals: <code>dblint_x</code> and <code>dblint_y</code>, both of which are initially 10,
and can be changed independently to other integer values (there are
<code>2*dblint_x+1</code> points computed in the x direction, and <code>2*dblint_y+1</code>
in the y direction). The routine subdivides the X axis and then for each value
of X it first computes <code><var>r</var>(x)</code> and <code><var>s</var>(x)</code>; then the Y axis
between <code><var>r</var>(x)</code> and <code><var>s</var>(x)</code> is subdivided and the integral
along the Y axis is performed using Simpson’s rule; then the integral along the
X axis is done using Simpson’s rule with the function values being the
Y-integrals. This procedure may be numerically unstable for a great variety of
reasons, but is reasonably fast: avoid using it on highly oscillatory functions
and functions with singularities (poles or branch points in the region). The Y
integrals depend on how far apart <code><var>r</var>(x)</code> and <code><var>s</var>(x)</code> are,
so if the distance <code><var>s</var>(x) - <var>r</var>(x)</code> varies rapidly with X, there
may be substantial errors arising from truncation with different step-sizes in
the various Y integrals. One can increase <code>dblint_x</code> and <code>dblint_y</code>
in an effort to improve the coverage of the region, at the expense of
computation time. The function values are not saved, so if the function is very
time-consuming, you will have to wait for re-computation if you change anything
(sorry). It is required that the functions <var>f</var>, <var>r</var>, and <var>s</var> be
either translated or compiled prior to calling <code>dblint</code>. This will result
in orders of magnitude speed improvement over interpreted code in many cases!
</p>
<p><code>demo ("dblint")</code> executes a demonstration of <code>dblint</code> applied to an
example problem.
</p>
</dd></dl>
<a name="defint"></a><a name="Item_003a-Integration_002fdeffn_002fdefint"></a><dl>
<dt><a name="index-defint"></a>Function: <strong>defint</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Attempts to compute a definite integral. <code>defint</code> is called by
<code>integrate</code> when limits of integration are specified, i.e., when
<code>integrate</code> is called as
<code>integrate (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code>.
Thus from the user’s point of view, it is sufficient to call <code>integrate</code>.
</p>
<p><code>defint</code> returns a symbolic expression, either the computed integral or the
noun form of the integral. See <code><a href="maxima_77.html#quad_005fqag">quad_qag</a></code> and related functions for
numerical approximation of definite integrals.
</p>
</dd></dl>
<a name="erfflag"></a><a name="Item_003a-Integration_002fdefvr_002ferfflag"></a><dl>
<dt><a name="index-erfflag"></a>Option variable: <strong>erfflag</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>erfflag</code> is <code>false</code>, prevents <code>risch</code> from introducing the
<code>erf</code> function in the answer if there were none in the integrand to
begin with.
</p>
</dd></dl>
<a name="ilt"></a><a name="Item_003a-Integration_002fdeffn_002filt"></a><dl>
<dt><a name="index-ilt"></a>Function: <strong>ilt</strong> <em>(<var>expr</var>, <var>s</var>, <var>t</var>)</em></dt>
<dd>
<p>Computes the inverse Laplace transform of <var>expr</var> with
respect to <var>s</var> and parameter <var>t</var>. <var>expr</var> must be a ratio of
polynomials whose denominator has only linear and quadratic factors;
there is an extension of <code>ilt</code>, called <code><a href="#pwilt">pwilt</a></code> (Piece-Wise
Inverse Laplace Transform) that handles several other cases where
<code>ilt</code> fails.
</p>
<p>By using the functions <code>laplace</code> and <code>ilt</code> together with the
<code>solve</code> or <code>linsolve</code> functions the user can solve a single
differential or convolution integral equation or a set of them.
</p>
<div class="example">
<pre class="example">(%i1) 'integrate (sinh(a*x)*f(t-x), x, 0, t) + b*f(t) = t**2;
t
/
[ 2
(%o1) I f(t - x) sinh(a x) dx + b f(t) = t
]
/
0
</pre><pre class="example">(%i2) laplace (%, t, s);
a laplace(f(t), t, s) 2
(%o2) b laplace(f(t), t, s) + --------------------- = --
2 2 3
s - a s
</pre><pre class="example">(%i3) linsolve ([%], ['laplace(f(t), t, s)]);
2 2
2 s - 2 a
(%o3) [laplace(f(t), t, s) = --------------------]
5 2 3
b s + (a - a b) s
</pre><pre class="example">(%i4) ilt (rhs (first (%)), s, t);
Is a b (a b - 1) positive, negative, or zero?
pos;
sqrt(a b (a b - 1)) t
2 cosh(---------------------) 2
b a t
(%o4) - ----------------------------- + -------
3 2 2 a b - 1
a b - 2 a b + a
2
+ ------------------
3 2 2
a b - 2 a b + a
</pre></div>
</dd></dl>
<a name="intanalysis"></a><a name="Item_003a-Integration_002fdefvr_002fintanalysis"></a><dl>
<dt><a name="index-intanalysis"></a>Option variable: <strong>intanalysis</strong></dt>
<dd><p>Default value: <code>true</code>
</p>
<p>When <code>true</code>, definite integration tries to find poles in the integrand in
the interval of integration. If there are, then the integral is evaluated
appropriately as a principal value integral. If intanalysis is <code>false</code>,
this check is not performed and integration is done assuming there are no poles.
</p>
<p>See also <code><a href="#ldefint">ldefint</a></code>.
</p>
<p>Examples:
</p>
<p>Maxima can solve the following integrals, when <code><a href="#intanalysis">intanalysis</a></code> is set to
<code>false</code>:
</p>
<div class="example">
<pre class="example">(%i1) integrate(1/(sqrt(x)+1),x,0,1);
1
/
[ 1
(%o1) I ----------- dx
] sqrt(x) + 1
/
0
(%i2) integrate(1/(sqrt(x)+1),x,0,1),intanalysis:false;
(%o2) 2 - 2 log(2)
(%i3) integrate(cos(a)/sqrt((tan(a))^2 +1),a,-%pi/2,%pi/2);
The number 1 isn't in the domain of atanh
-- an error. To debug this try: debugmode(true);
(%i4) intanalysis:false$
(%i5) integrate(cos(a)/sqrt((tan(a))^2+1),a,-%pi/2,%pi/2);
%pi
(%o5) ---
2
</pre></div>
</dd></dl>
<a name="integrate"></a><a name="Item_003a-Integration_002fdeffn_002fintegrate"></a><dl>
<dt><a name="index-integrate"></a>Function: <strong>integrate</strong> <em><br> <tt>integrate</tt> (<var>expr</var>, <var>x</var>) <br> <tt>integrate</tt> (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Attempts to symbolically compute the integral of <var>expr</var> with respect to
<var>x</var>. <code>integrate (<var>expr</var>, <var>x</var>)</code> is an indefinite integral,
while <code>integrate (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code> is a definite
integral, with limits of integration <var>a</var> and <var>b</var>. The limits should
not contain <var>x</var>, although <code>integrate</code> does not enforce this
restriction. <var>a</var> need not be less than <var>b</var>.
If <var>b</var> is equal to <var>a</var>, <code>integrate</code> returns zero.
</p>
<p>See <code><a href="maxima_77.html#quad_005fqag">quad_qag</a></code> and related functions for numerical approximation of
definite integrals. See <code><a href="#residue">residue</a></code> for computation of residues
(complex integration). See <code><a href="maxima_72.html#antid">antid</a></code> for an alternative means of computing
indefinite integrals.
</p>
<p>The integral (an expression free of <code>integrate</code>) is returned if
<code>integrate</code> succeeds. Otherwise the return value is
the noun form of the integral (the quoted operator <code>'integrate</code>)
or an expression containing one or more noun forms.
The noun form of <code>integrate</code> is displayed with an integral sign.
</p>
<p>In some circumstances it is useful to construct a noun form by hand, by quoting
<code>integrate</code> with a single quote, e.g.,
<code>'integrate (<var>expr</var>, <var>x</var>)</code>. For example, the integral may depend
on some parameters which are not yet computed.
The noun may be applied to its arguments by <code>ev (<var>i</var>, nouns)</code>
where <var>i</var> is the noun form of interest.
</p>
<p><code>integrate</code> handles definite integrals separately from indefinite, and
employs a range of heuristics to handle each case. Special cases of definite
integrals include limits of integration equal to zero or infinity (<code><a href="maxima_50.html#inf">inf</a></code> or
<code><a href="maxima_50.html#minf">minf</a></code>), trigonometric functions with limits of integration equal to zero
and <code>%pi</code> or <code>2 %pi</code>, rational functions, integrals related to the
definitions of the <code><a href="maxima_58.html#beta">beta</a></code> and <code><a href="maxima_107.html#psi">psi</a></code> functions, and some logarithmic
and trigonometric integrals. Processing rational functions may include
computation of residues. If an applicable special case is not found, an attempt
will be made to compute the indefinite integral and evaluate it at the limits of
integration. This may include taking a limit as a limit of integration goes to
infinity or negative infinity; see also <code><a href="#ldefint">ldefint</a></code>.
</p>
<p>Special cases of indefinite integrals include trigonometric functions,
exponential and logarithmic functions,
and rational functions.
<code>integrate</code> may also make use of a short table of elementary integrals.
</p>
<p><code>integrate</code> may carry out a change of variable
if the integrand has the form <code>f(g(x)) * diff(g(x), x)</code>.
<code>integrate</code> attempts to find a subexpression <code>g(x)</code> such that
the derivative of <code>g(x)</code> divides the integrand.
This search may make use of derivatives defined by the <code>gradef</code> function.
See also <code><a href="#changevar">changevar</a></code> and <code><a href="maxima_72.html#antid">antid</a></code>.
</p>
<p>If none of the preceding heuristics find the indefinite integral, the Risch
algorithm is executed. The flag <code><a href="#risch">risch</a></code> may be set as an <code><a href="maxima_10.html#evflag">evflag</a></code>,
in a call to <code>ev</code> or on the command line, e.g.,
<code>ev (integrate (<var>expr</var>, <var>x</var>), risch)</code> or
<code>integrate (<var>expr</var>, <var>x</var>), risch</code>. If <code>risch</code> is present,
<code>integrate</code> calls the <code><a href="#risch">risch</a></code> function without attempting heuristics
first. See also <code><a href="#risch">risch</a></code>.
</p>
<p><code>integrate</code> works only with functional relations represented explicitly
with the <code>f(x)</code> notation. <code>integrate</code> does not respect implicit
dependencies established by the <code><a href="maxima_72.html#depends">depends</a></code> function.
</p>
<p><code>integrate</code> may need to know some property of a parameter in the integrand.
<code>integrate</code> will first consult the <code><a href="maxima_43.html#assume">assume</a></code> database,
and, if the variable of interest is not there,
<code>integrate</code> will ask the user.
Depending on the question,
suitable responses are <code>yes;</code> or <code>no;</code>,
or <code>pos;</code>, <code>zero;</code>, or <code>neg;</code>.
</p>
<p><code>integrate</code> is not, by default, declared to be linear. See <code>declare</code>
and <code>linear</code>.
</p>
<p><code>integrate</code> attempts integration by parts only in a few special cases.
</p>
<p>Examples:
</p>
<ul>
<li> Elementary indefinite and definite integrals.
<div class="example">
<pre class="example">(%i1) integrate (sin(x)^3, x);
3
cos (x)
(%o1) ------- - cos(x)
3
</pre><pre class="example">(%i2) integrate (x/ sqrt (b^2 - x^2), x);
2 2
(%o2) - sqrt(b - x )
</pre><pre class="example">(%i3) integrate (cos(x)^2 * exp(x), x, 0, %pi);
%pi
3 %e 3
(%o3) ------- - -
5 5
</pre><pre class="example">(%i4) integrate (x^2 * exp(-x^2), x, minf, inf);
sqrt(%pi)
(%o4) ---------
2
</pre></div>
</li><li> Use of <code>assume</code> and interactive query.
<div class="example">
<pre class="example">(%i1) assume (a > 1)$
</pre><pre class="example">(%i2) integrate (x**a/(x+1)**(5/2), x, 0, inf);
2 a + 2
Is ------- an integer?
5
no;
Is 2 a - 3 positive, negative, or zero?
neg;
3
(%o2) beta(a + 1, - - a)
2
</pre></div>
</li><li> Change of variable. There are two changes of variable in this example:
one using a derivative established by <code><a href="maxima_72.html#gradef">gradef</a></code>, and one using the
derivation <code>diff(r(x))</code> of an unspecified function <code>r(x)</code>.
<div class="example">
<pre class="example">(%i3) gradef (q(x), sin(x**2));
(%o3) q(x)
</pre><pre class="example">(%i4) diff (log (q (r (x))), x);
d 2
(-- (r(x))) sin(r (x))
dx
(%o4) ----------------------
q(r(x))
</pre><pre class="example">(%i5) integrate (%, x);
(%o5) log(q(r(x)))
</pre></div>
</li><li> Return value contains the <code>'integrate</code> noun form. In this example, Maxima
can extract one factor of the denominator of a rational function, but cannot
factor the remainder or otherwise find its integral. <code><a href="maxima_41.html#grind">grind</a></code> shows the
noun form <code>'integrate</code> in the result. See also
<code><a href="#integrate_005fuse_005frootsof">integrate_use_rootsof</a></code> for more on integrals of rational functions.
<div class="example">
<pre class="example">(%i1) expand ((x-4) * (x^3+2*x+1));
4 3 2
(%o1) x - 4 x + 2 x - 7 x - 4
</pre><pre class="example">(%i2) integrate (1/%, x);
/ 2
[ x + 4 x + 18
I ------------- dx
] 3
log(x - 4) / x + 2 x + 1
(%o2) ---------- - ------------------
73 73
</pre><pre class="example">(%i3) grind (%);
log(x-4)/73-('integrate((x^2+4*x+18)/(x^3+2*x+1),x))/73$
</pre></div>
</li><li> Defining a function in terms of an integral. The body of a function is not
evaluated when the function is defined. Thus the body of <code>f_1</code> in this
example contains the noun form of <code>integrate</code>. The quote-quote operator
<code>'<!-- /@w -->'</code> causes the integral to be evaluated, and the result becomes the
body of <code>f_2</code>.
<div class="example">
<pre class="example">(%i1) f_1 (a) := integrate (x^3, x, 1, a);
3
(%o1) f_1(a) := integrate(x , x, 1, a)
</pre><pre class="example">(%i2) ev (f_1 (7), nouns);
(%o2) 600
</pre><pre class="example">(%i3) /* Note parentheses around integrate(...) here */
f_2 (a) := ''(integrate (x^3, x, 1, a));
4
a 1
(%o3) f_2(a) := -- - -
4 4
</pre><pre class="example">(%i4) f_2 (7);
(%o4) 600
</pre></div>
</li></ul>
</dd></dl>
<a name="integration_005fconstant"></a><a name="Item_003a-Integration_002fdefvr_002fintegration_005fconstant"></a><dl>
<dt><a name="index-integration_005fconstant"></a>System variable: <strong>integration_constant</strong></dt>
<dd><p>Default value: <code>%c</code>
</p>
<p>When a constant of integration is introduced by indefinite integration of an
equation, the name of the constant is constructed by concatenating
<code>integration_constant</code> and <code>integration_constant_counter</code>.
</p>
<p><code>integration_constant</code> may be assigned any symbol.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) integrate (x^2 = 1, x);
3
x
(%o1) -- = x + %c1
3
</pre><pre class="example">(%i2) integration_constant : 'k;
(%o2) k
</pre><pre class="example">(%i3) integrate (x^2 = 1, x);
3
x
(%o3) -- = x + k2
3
</pre></div>
</dd></dl>
<a name="integration_005fconstant_005fcounter"></a><a name="Item_003a-Integration_002fdefvr_002fintegration_005fconstant_005fcounter"></a><dl>
<dt><a name="index-integration_005fconstant_005fcounter"></a>System variable: <strong>integration_constant_counter</strong></dt>
<dd><p>Default value: 0
</p>
<p>When a constant of integration is introduced by indefinite integration of an
equation, the name of the constant is constructed by concatenating
<code>integration_constant</code> and <code>integration_constant_counter</code>.
</p>
<p><code>integration_constant_counter</code> is incremented before constructing the next
integration constant.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) integrate (x^2 = 1, x);
3
x
(%o1) -- = x + %c1
3
</pre><pre class="example">(%i2) integrate (x^2 = 1, x);
3
x
(%o2) -- = x + %c2
3
</pre><pre class="example">(%i3) integrate (x^2 = 1, x);
3
x
(%o3) -- = x + %c3
3
</pre><pre class="example">(%i4) reset (integration_constant_counter);
(%o4) [integration_constant_counter]
</pre><pre class="example">(%i5) integrate (x^2 = 1, x);
3
x
(%o5) -- = x + %c1
3
</pre></div>
</dd></dl>
<a name="integrate_005fuse_005frootsof"></a><a name="Item_003a-Integration_002fdefvr_002fintegrate_005fuse_005frootsof"></a><dl>
<dt><a name="index-integrate_005fuse_005frootsof"></a>Option variable: <strong>integrate_use_rootsof</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>integrate_use_rootsof</code> is <code>true</code> and the denominator of
a rational function cannot be factored, <code><a href="#integrate">integrate</a></code> returns the integral
in a form which is a sum over the roots (not yet known) of the denominator.
</p>
<p>For example, with <code>integrate_use_rootsof</code> set to <code>false</code>,
<code>integrate</code> returns an unsolved integral of a rational function in noun
form:
</p>
<div class="example">
<pre class="example">(%i1) integrate_use_rootsof: false$
</pre><pre class="example">(%i2) integrate (1/(1+x+x^5), x);
/ 2
[ x - 4 x + 5
I ------------ dx 2 x + 1
] 3 2 2 5 atan(-------)
/ x - x + 1 log(x + x + 1) sqrt(3)
(%o2) ----------------- - --------------- + ---------------
7 14 7 sqrt(3)
</pre></div>
<p>Now we set the flag to be true and the unsolved part of the integral will be
expressed as a summation over the roots of the denominator of the rational
function:
</p>
<div class="example">
<pre class="example">(%i3) integrate_use_rootsof: true$
</pre><pre class="example">(%i4) integrate (1/(1+x+x^5), x);
==== 2
\ (%r4 - 4 %r4 + 5) log(x - %r4)
> -------------------------------
/ 2
==== 3 %r4 - 2 %r4
3 2
%r4 in rootsof(%r4 - %r4 + 1, %r4)
(%o4) ----------------------------------------------------------
7
2 x + 1
2 5 atan(-------)
log(x + x + 1) sqrt(3)
- --------------- + ---------------
14 7 sqrt(3)
</pre></div>
<p>Alternatively the user may compute the roots of the denominator separately,
and then express the integrand in terms of these roots, e.g.,
<code>1/((x - a)*(x - b)*(x - c))</code> or <code>1/((x^2 - (a+b)*x + a*b)*(x - c))</code>
if the denominator is a cubic polynomial.
Sometimes this will help Maxima obtain a more useful result.
</p>
</dd></dl>
<a name="laplace"></a><a name="Item_003a-Integration_002fdeffn_002flaplace"></a><dl>
<dt><a name="index-laplace"></a>Function: <strong>laplace</strong> <em>(<var>expr</var>, <var>t</var>, <var>s</var>)</em></dt>
<dd>
<p>Attempts to compute the Laplace transform of <var>expr</var> with respect to the
variable <var>t</var> and transform parameter <var>s</var>. The Laplace
transform of the function <code>f(t)</code> is the one-sided transform defined by
$$
F(s) = \int_0^{\infty} f(t) e^{-st} dt
$$</p>
<p>where <em>F(s)</em> is the transform of <em>f(t)</em>, represented by <var>expr</var>.
</p>
<p><code>laplace</code> recognizes in <var>expr</var> the functions <code><a href="maxima_72.html#delta">delta</a></code>, <code><a href="maxima_27.html#exp">exp</a></code>,
<code>`log'</code>, <code><a href="maxima_53.html#sin">sin</a></code>, <code><a href="maxima_53.html#cos">cos</a></code>, <code><a href="maxima_53.html#sinh">sinh</a></code>, <code><a href="maxima_53.html#cosh">cosh</a></code>, and <code><a href="maxima_60.html#erf">erf</a></code>,
as well as <code>derivative</code>, <code><a href="#integrate">integrate</a></code>, <code><a href="maxima_112.html#sum">sum</a></code>, and <code><a href="#ilt">ilt</a></code>. If
<code>laplace</code> fails to find a transform the function <code><a href="#specint">specint</a></code> is called.
<code><a href="#specint">specint</a></code> can find the laplace transform for expressions with special
functions like the bessel functions <code><a href="maxima_56.html#bessel_005fj">bessel_j</a></code>, <code><a href="maxima_56.html#bessel_005fi">bessel_i</a></code>, …
and can handle the <code><a href="maxima_228.html#unit_005fstep">unit_step</a></code> function. See also <code><a href="#specint">specint</a></code>.
</p>
<p>If <code><a href="#specint">specint</a></code> cannot find a solution too, a noun <code>laplace</code> is returned.
</p>
<p><var>expr</var> may also be a linear, constant coefficient differential equation in
which case <code><a href="maxima_72.html#atvalue">atvalue</a></code> of the dependent variable is used.
The required atvalue may be supplied either before or after the transform is
computed. Since the initial conditions must be specified at zero, if one has
boundary conditions imposed elsewhere he can impose these on the general
solution and eliminate the constants by solving the general solution
for them and substituting their values back.
</p>
<p><code>laplace</code> recognizes convolution integrals of the form
$$
\int_0^t f(x) g(t-x) dx
$$</p>
<p>Other kinds of convolutions are not recognized.
</p>
<p>Functional relations must be explicitly represented in <var>expr</var>;
implicit relations, established by <code><a href="maxima_72.html#depends">depends</a></code>, are not recognized.
That is, if <em>f</em> depends on <em>x</em> and <em>y</em>,
<em>f (x, y)</em> must appear in <var>expr</var>.
</p>
<p>See also <code><a href="#ilt">ilt</a></code>, the inverse Laplace transform.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) laplace (exp (2*t + a) * sin(t) * t, t, s);
a
%e (2 s - 4)
(%o1) ---------------
2 2
(s - 4 s + 5)
(%i2) laplace ('diff (f (x), x), x, s);
(%o2) s laplace(f(x), x, s) - f(0)
(%i3) diff (diff (delta (t), t), t);
2
d
(%o3) --- (delta(t))
2
dt
(%i4) laplace (%, t, s);
!
d ! 2
(%o4) - -- (delta(t))! + s - delta(0) s
dt !
!t = 0
(%i5) assume(a>0)$
(%i6) laplace(gamma_incomplete(a,t),t,s),gamma_expand:true;
- a - 1
gamma(a) gamma(a) s
(%o6) -------- - -----------------
s 1 a
(- + 1)
s
(%i7) factor(laplace(gamma_incomplete(1/2,t),t,s));
s + 1
sqrt(%pi) (sqrt(s) sqrt(-----) - 1)
s
(%o7) -----------------------------------
3/2 s + 1
s sqrt(-----)
s
(%i8) assume(exp(%pi*s)>1)$
(%i9) laplace(sum((-1)^n*unit_step(t-n*%pi)*sin(t),n,0,inf),t,s),
simpsum;
</pre><pre class="example"> %i %i
------------------------ - ------------------------
- %pi s - %pi s
(s + %i) (1 - %e ) (s - %i) (1 - %e )
(%o9) ---------------------------------------------------
2
</pre><pre class="example">(%i9) factor(%);
%pi s
%e
(%o9) -------------------------------
%pi s
(s - %i) (s + %i) (%e - 1)
</pre></div>
</dd></dl>
<a name="ldefint"></a><a name="Item_003a-Integration_002fdeffn_002fldefint"></a><dl>
<dt><a name="index-ldefint"></a>Function: <strong>ldefint</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Attempts to compute the definite integral of <var>expr</var> by using <code><a href="maxima_70.html#limit">limit</a></code>
to evaluate the indefinite integral of <var>expr</var> with respect to <var>x</var>
at the upper limit <var>b</var> and at the lower limit <var>a</var>.
If it fails to compute the definite integral,
<code>ldefint</code> returns an expression containing limits as noun forms.
</p>
<p><code>ldefint</code> is not called from <code><a href="#integrate">integrate</a></code>, so executing
<code>ldefint (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code> may yield a different
result than <code>integrate (<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</code>.
<code>ldefint</code> always uses the same method to evaluate the definite integral,
while <code>integrate</code> may employ various heuristics and may recognize some
special cases.
</p>
</dd></dl>
<a name="pwilt"></a><a name="Item_003a-Integration_002fdeffn_002fpwilt"></a><dl>
<dt><a name="index-pwilt"></a>Function: <strong>pwilt</strong> <em>(<var>expr</var>, <var>s</var>, <var>t</var>)</em></dt>
<dd>
<p>Computes the inverse Laplace transform of <var>expr</var> with
respect to <var>s</var> and parameter <var>t</var>. Unlike <code><a href="#ilt">ilt</a></code>,
<code>pwilt</code> is able to return piece-wise and periodic functions
and can also handle some cases with polynomials of degree greater than 3
in the denominator.
</p>
<p>Two examples where <code>ilt</code> fails:
</p><div class="example">
<pre class="example">(%i1) pwilt (exp(-s)*s/(s^3-2*s-s+2), s, t);
t - 1 - 2 (t - 1)
(t - 1) %e 2 %e
(%o1) hstep(t - 1) (--------------- - ---------------)
3 9
(%i2) pwilt ((s^2+2)/(s^2-1), s, t);
t - t
3 %e 3 %e
(%o2) delta(t) + ----- - -------
2 2
</pre></div>
</dd></dl>
<a name="potential"></a><a name="Item_003a-Integration_002fdeffn_002fpotential"></a><dl>
<dt><a name="index-potential"></a>Function: <strong>potential</strong> <em>(<var>givengradient</var>)</em></dt>
<dd>
<p>The calculation makes use of the global variable <code>potentialzeroloc[0]</code>
which must be <code>nonlist</code> or of the form
</p>
<div class="example">
<pre class="example">[indeterminatej=expressionj, indeterminatek=expressionk, ...]
</pre></div>
<p>the former being equivalent to the nonlist expression for all right-hand
sides in the latter. The indicated right-hand sides are used as the
lower limit of integration. The success of the integrations may
depend upon their values and order. <code>potentialzeroloc</code> is initially set
to 0.
</p></dd></dl>
<a name="prefer_005fd"></a><a name="Item_003a-Integration_002fdefvr_002fprefer_005fd"></a><dl>
<dt><a name="index-prefer_005fd"></a>Option variable: <strong>prefer_d</strong></dt>
<dd><p>Default value: <code>false</code>
</p>
<p>When <code>prefer_d</code> is <code>true</code>, <code><a href="#specint">specint</a></code> will prefer to
express solutions using <code><a href="maxima_63.html#parabolic_005fcylinder_005fd">parabolic_cylinder_d</a></code> rather than
hypergeometric functions.
</p>
<p>In the example below, the solution contains <code><a href="maxima_63.html#parabolic_005fcylinder_005fd">parabolic_cylinder_d</a></code>
when <code>prefer_d</code> is <code>true</code>.
</p>
<div class="example">
<pre class="example">(%i1) assume(s>0);
(%o1) [s > 0]
</pre><pre class="example">(%i2) factor(specint(ex:%e^-(t^2/8)*exp(-s*t),t));
2
2 s
(%o2) - sqrt(2) sqrt(%pi) %e (erf(sqrt(2) s) - 1)
</pre><pre class="example">(%i3) specint(ex,t),prefer_d=true;
2
s
--
s 8
parabolic_cylinder_d(- 1, -------) %e
sqrt(2)
(%o3) ---------------------------------------
sqrt(2)
</pre></div>
</dd></dl>
<a name="residue"></a><a name="Item_003a-Integration_002fdeffn_002fresidue"></a><dl>
<dt><a name="index-residue"></a>Function: <strong>residue</strong> <em>(<var>expr</var>, <var>z</var>, <var>z_0</var>)</em></dt>
<dd>
<p>Computes the residue in the complex plane of the expression <var>expr</var> when the
variable <var>z</var> assumes the value <var>z_0</var>. The residue is the coefficient of
<code>(<var>z</var> - <var>z_0</var>)^(-1)</code> in the Laurent series for <var>expr</var>.
</p>
<div class="example">
<pre class="example">(%i1) residue (s/(s**2+a**2), s, a*%i);
1
(%o1) -
2
</pre><pre class="example">(%i2) residue (sin(a*x)/x**4, x, 0);
3
a
(%o2) - --
6
</pre></div>
</dd></dl>
<a name="risch"></a><a name="Item_003a-Integration_002fdeffn_002frisch"></a><dl>
<dt><a name="index-risch"></a>Function: <strong>risch</strong> <em>(<var>expr</var>, <var>x</var>)</em></dt>
<dd>
<p>Integrates <var>expr</var> with respect to <var>x</var> using the
transcendental case of the Risch algorithm. (The algebraic case of
the Risch algorithm has not been implemented.) This currently
handles the cases of nested exponentials and logarithms which the main
part of <code>integrate</code> can’t do. <code><a href="#integrate">integrate</a></code> will automatically apply
<code>risch</code> if given these cases.
</p>
<p><code>erfflag</code>, if <code>false</code>, prevents <code>risch</code> from introducing the
<code>erf</code> function in the answer if there were none in the integrand to begin
with.
</p>
<div class="example">
<pre class="example">(%i1) risch (x^2*erf(x), x);
2
3 2 - x
%pi x erf(x) + (sqrt(%pi) x + sqrt(%pi)) %e
(%o1) -------------------------------------------------
3 %pi
</pre><pre class="example">(%i2) diff(%, x), ratsimp;
2
(%o2) x erf(x)
</pre></div>
</dd></dl>
<a name="specint"></a><a name="Item_003a-Integration_002fdeffn_002fspecint"></a><dl>
<dt><a name="index-specint"></a>Function: <strong>specint</strong> <em>(exp(- s*<var>t</var>) * <var>expr</var>, <var>t</var>)</em></dt>
<dd>
<p>Compute the Laplace transform of <var>expr</var> with respect to the variable <var>t</var>.
The integrand <var>expr</var> may contain special functions. The
parameter <var>s</var> maybe be named something else; it is determined
automatically, as the examples below show where <var>p</var> is used in
some places.
</p>
<p>The following special functions are handled by <code>specint</code>: incomplete gamma
function, error functions (but not the error function <code>erfi</code>, it is easy to
transform <code>erfi</code> e.g. to the error function <code>erf</code>), exponential
integrals, bessel functions (including products of bessel functions), hankel
functions, hermite and the laguerre polynomials.
</p>
<p>Furthermore, <code>specint</code> can handle the hypergeometric function
<code>%f[p,q]([],[],z)</code>, the Whittaker function of the first kind
<code>%m[u,k](z)</code> and of the second kind <code>%w[u,k](z)</code>.
</p>
<p>The result may be in terms of special functions and can include unsimplified
hypergeometric functions. If variable <code><a href="#prefer_005fd">prefer_d</a></code> is <code>true</code>
then the <code><a href="maxima_63.html#parabolic_005fcylinder_005fd">parabolic_cylinder_d</a></code> function may be used in the result
in preference to hypergeometric functions.
</p>
<p>When <code><a href="#laplace">laplace</a></code> fails to find a Laplace transform, <code>specint</code> is called.
Because <code><a href="#laplace">laplace</a></code> knows more general rules for Laplace transforms, it is
preferable to use <code><a href="#laplace">laplace</a></code> and not <code>specint</code>.
</p>
<p><code>demo("hypgeo")</code> displays several examples of Laplace transforms computed by
<code>specint</code>.
</p>
<p>Examples:
</p><div class="example">
<pre class="example">(%i1) assume (p > 0, a > 0)$
</pre><pre class="example">(%i2) specint (t^(1/2) * exp(-a*t/4) * exp(-p*t), t);
sqrt(%pi)
(%o2) ------------
a 3/2
2 (p + -)
4
</pre><pre class="example">(%i3) specint (t^(1/2) * bessel_j(1, 2 * a^(1/2) * t^(1/2))
* exp(-p*t), t);
- a/p
sqrt(a) %e
(%o3) ---------------
2
p
</pre></div>
<p>Examples for exponential integrals:
</p>
<div class="example">
<pre class="example">(%i4) assume(s>0,a>0,s-a>0)$
(%i5) ratsimp(specint(%e^(a*t)
*(log(a)+expintegral_e1(a*t))*%e^(-s*t),t));
log(s)
(%o5) ------
s - a
(%i6) logarc:true$
(%i7) gamma_expand:true$
radcan(specint((cos(t)*expintegral_si(t)
-sin(t)*expintegral_ci(t))*%e^(-s*t),t));
log(s)
(%o8) ------
2
s + 1
ratsimp(specint((2*t*log(a)+2/a*sin(a*t)
-2*t*expintegral_ci(a*t))*%e^(-s*t),t));
2 2
log(s + a )
(%o9) ------------
2
s
</pre></div>
<p>Results when using the expansion of <code><a href="maxima_58.html#gamma_005fincomplete">gamma_incomplete</a></code> and when changing
the representation to <code><a href="maxima_59.html#expintegral_005fe1">expintegral_e1</a></code>:
</p>
<div class="example">
<pre class="example">(%i10) assume(s>0)$
(%i11) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);
1
gamma_incomplete(-, k s)
2
(%o11) ------------------------
sqrt(%pi) sqrt(s)
(%i12) gamma_expand:true$
(%i13) specint(1/sqrt(%pi*t)*unit_step(t-k)*%e^(-s*t),t);
erfc(sqrt(k) sqrt(s))
(%o13) ---------------------
sqrt(s)
(%i14) expintrep:expintegral_e1$
(%i15) ratsimp(specint(1/(t+a)^2*%e^(-s*t),t));
a s
a s %e expintegral_e1(a s) - 1
(%o15) - ---------------------------------
a
</pre></div>
</dd></dl>
<a name="tldefint"></a><a name="Item_003a-Integration_002fdeffn_002ftldefint"></a><dl>
<dt><a name="index-tldefint"></a>Function: <strong>tldefint</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Equivalent to <code>ldefint</code> with <code>tlimswitch</code> set to <code>true</code>.
</p>
</dd></dl>
<a name="Item_003a-Integration_002fnode_002fIntroduction-to-QUADPACK"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_76.html#Introduction-to-QUADPACK" accesskey="n" rel="next">Introduction to QUADPACK</a>, Previous: <a href="maxima_74.html#Introduction-to-Integration" accesskey="p" rel="previous">Introduction to Integration</a>, Up: <a href="maxima_73.html#Integration" accesskey="u" rel="up">Integration</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|