File: maxima_85.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (447 lines) | stat: -rw-r--r-- 19,530 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for fast Fourier transform</title>

<meta name="description" content="Maxima Manual: Functions and Variables for fast Fourier transform">
<meta name="keywords" content="Maxima Manual: Functions and Variables for fast Fourier transform">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Numerical" rel="up" title="Numerical">
<link href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" rel="next" title="Functions and Variables for FFTPACK5">
<link href="maxima_84.html#Introduction-to-fast-Fourier-transform" rel="previous" title="Introduction to fast Fourier transform">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-fast-Fourier-transform"></a>
<div class="header">
<p>
Next: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="n" rel="next">Functions and Variables for FFTPACK5</a>, Previous: <a href="maxima_84.html#Introduction-to-fast-Fourier-transform" accesskey="p" rel="previous">Introduction to fast Fourier transform</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-fft"></a>
<h3 class="section">21.2 Functions and Variables for fft</h3>

<a name="polartorect"></a><a name="Item_003a-Numerical_002fdeffn_002fpolartorect"></a><dl>
<dt><a name="index-polartorect"></a>Function: <strong>polartorect</strong> <em>(<var>r</var>, <var>t</var>)</em></dt>
<dd>
<p>Translates complex values of the form <code>r %e^(%i t)</code> to the form
<code>a + b %i</code>, where <var>r</var> is the magnitude and <var>t</var> is the phase.
<var>r</var> and <var>t</var> are 1-dimensional arrays of the same size.
The array size need not be a power of 2.
</p>
<p>The original values of the input arrays are
replaced by the real and imaginary parts, <code>a</code> and <code>b</code>, on return.
The outputs are calculated as
</p>
<div class="example">
<pre class="example">a = r cos(t)
b = r sin(t)
</pre></div>

<p><code><a href="#polartorect">polartorect</a></code> is the inverse function of <code><a href="#recttopolar">recttopolar</a></code>.
</p>
<p><code>load(&quot;fft&quot;)</code> loads this function.  See also <code><a href="#fft">fft</a></code>.
</p>




</dd></dl>

<a name="recttopolar"></a><a name="Item_003a-Numerical_002fdeffn_002frecttopolar"></a><dl>
<dt><a name="index-recttopolar"></a>Function: <strong>recttopolar</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Translates complex values of the form <code>a + b %i</code> to the form
<code>r %e^(%i t)</code>, where <var>a</var> is the real part and <var>b</var> is the imaginary
part.  <var>a</var> and <var>b</var> are 1-dimensional arrays of the same size.
The array size need not be a power of 2.
</p>
<p>The original values of the input arrays are
replaced by the magnitude and angle, <code>r</code> and <code>t</code>, on return.
The outputs are calculated as
</p>
<div class="example">
<pre class="example">r = sqrt(a^2 + b^2)
t = atan2(b, a)
</pre></div>

<p>The computed angle is in the range <code>-%pi</code> to <code>%pi</code>.
</p>
<p><code>recttopolar</code> is the inverse function of <code><a href="#polartorect">polartorect</a></code>.
</p>
<p><code>load(&quot;fft&quot;)</code> loads this function.  See also <code><a href="#fft">fft</a></code>.
</p>




</dd></dl>

<a name="inverse_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002finverse_005ffft"></a><dl>
<dt><a name="index-inverse_005ffft"></a>Function: <strong>inverse_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the inverse complex fast Fourier transform.
<var>y</var> is a list or array (named or unnamed) which contains the data to
transform.  The number of elements must be a power of 2.
The elements must be literal numbers (integers, rationals, floats, or bigfloats)
or symbolic constants,
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are literal numbers
or symbolic constants.
</p>
<p><code>inverse_fft</code> returns a new object of the same type as <var>y</var>,
which is not modified.
Results are always computed as floats
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are floats.
If bigfloat precision is needed the function <code><a href="#bf_005finverse_005ffft">bf_inverse_fft</a></code> can
be used instead as a drop-in replacement of <code>inverse_fft</code> that is
slower, but supports bfloats. 
</p>
<p>The inverse discrete Fourier transform is defined as follows.
Let <code>x</code> be the output of the inverse transform.
Then for <code>j</code> from 0 through <code>n - 1</code>,
</p>
<div class="example">
<pre class="example">x[j] = sum(y[k] exp(-2 %i %pi j k / n), k, 0, n - 1)
</pre></div>

<p>As there are various sign and normalization conventions possible,
this definition of the transform may differ from that used by other mathematical software.
</p>
<p><code>load(&quot;fft&quot;)</code> loads this function.
</p>
<p>See also <code><a href="#fft">fft</a></code> (forward transform), <code><a href="#recttopolar">recttopolar</a></code>, and
<code><a href="#polartorect">polartorect</a></code>.
</p>
<p>Examples:
</p>
<p>Real data.
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;fft&quot;) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : inverse_fft (L);
(%o4) [0.0, 14.49 %i - .8284, 0.0, 2.485 %i + 4.828, 0.0, 
                       4.828 - 2.485 %i, 0.0, - 14.49 %i - .8284]
(%i5) L2 : fft (L1);
(%o5) [1.0, 2.0 - 2.168L-19 %i, 3.0 - 7.525L-20 %i, 
4.0 - 4.256L-19 %i, - 1.0, 2.168L-19 %i - 2.0, 
7.525L-20 %i - 3.0, 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6)                       3.545L-16
</pre></div>

<p>Complex data.
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;fft&quot;) $
(%i2) fpprintprec : 4 $                 
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : inverse_fft (L);
(%o4) [4.0, 2.711L-19 %i + 4.0, 2.0 %i - 2.0, 
- 2.828 %i - 2.828, 0.0, 5.421L-20 %i + 4.0, - 2.0 %i - 2.0, 
2.828 %i + 2.828]
(%i5) L2 : fft (L1);
(%o5) [4.066E-20 %i + 1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i, 
1.55L-19 %i - 1.0, - 4.066E-20 %i - 1.0, 1.0 - 1.0 %i, 
1.0 %i + 1.0, 1.0 - 7.368L-20 %i]
(%i6) lmax (abs (L2 - L));                    
(%o6)                       6.841L-17
</pre></div>




</dd></dl>

<a name="fft"></a><a name="Item_003a-Numerical_002fdeffn_002ffft"></a><dl>
<dt><a name="index-fft"></a>Function: <strong>fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the complex fast Fourier transform.
<var>x</var> is a list or array (named or unnamed) which contains the data to
transform.  The number of elements must be a power of 2.
The elements must be literal numbers (integers, rationals, floats, or bigfloats)
or symbolic constants,
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are literal numbers
or symbolic constants.
</p>
<p><code>fft</code> returns a new object of the same type as <var>x</var>,
which is not modified.
Results are always computed as floats
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are floats.
If bigfloat precision is needed the function <code><a href="#bf_005ffft">bf_fft</a></code> can be used
instead as a drop-in replacement of <code>fft</code> that is slower, but
supports bfloats. In addition if it is known that the input consists
of only real values (no imaginary parts), <code><a href="#real_005ffft">real_fft</a></code> can be used
which is potentially faster.
</p>
<p>The discrete Fourier transform is defined as follows.
Let <code>y</code> be the output of the transform.
Then for <code>k</code> from 0 through <code>n - 1</code>,
</p>
<div class="example">
<pre class="example">y[k] = (1/n) sum(x[j] exp(+2 %i %pi j k / n), j, 0, n - 1)
</pre></div>

<p>As there are various sign and normalization conventions possible,
this definition of the transform may differ from that used by other mathematical software.
</p>
<p>When the data <var>x</var> are real,
real coefficients <code>a</code> and <code>b</code> can be computed such that
</p>
<div class="example">
<pre class="example">x[j] = sum(a[k]*cos(2*%pi*j*k/n)+b[k]*sin(2*%pi*j*k/n), k, 0, n/2)
</pre></div>

<p>with
</p>
<div class="example">
<pre class="example">a[0] = realpart (y[0])
b[0] = 0
</pre></div>

<p>and, for k from 1 through n/2 - 1,
</p>
<div class="example">
<pre class="example">a[k] = realpart (y[k] + y[n - k])
b[k] = imagpart (y[n - k] - y[k])
</pre></div>

<p>and
</p>
<div class="example">
<pre class="example">a[n/2] = realpart (y[n/2])
b[n/2] = 0
</pre></div>

<p><code>load(&quot;fft&quot;)</code> loads this function.
</p>
<p>See also <code><a href="#inverse_005ffft">inverse_fft</a></code> (inverse transform),
<code><a href="#recttopolar">recttopolar</a></code>, and <code><a href="#polartorect">polartorect</a></code>.. See <code><a href="#real_005ffft">real_fft</a></code>
for FFTs of a real-valued input, and <code><a href="#bf_005ffft">bf_fft</a></code> and
<code><a href="#bf_005freal_005ffft">bf_real_fft</a></code> for operations on bigfloat values.  Finally, for
transforms of any size (but limited to float values), see
<code><a href="maxima_86.html#fftpack5_005ffft">fftpack5_fft</a></code> and <code><a href="maxima_86.html#fftpack5_005freal_005ffft">fftpack5_real_fft</a></code>.
</p>
<p>Examples:
</p>
<p>Real data.
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;fft&quot;) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : fft (L);
(%o4) [0.0, 1.811 %i - .1036, 0.0, 0.3107 %i + .6036, 0.0, 
                         0.6036 - 0.3107 %i, 0.0, (- 1.811 %i) - 0.1036]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0, 2.168L-19 %i + 2.0, 7.525L-20 %i + 3.0, 
4.256L-19 %i + 4.0, - 1.0, - 2.168L-19 %i - 2.0, 
- 7.525L-20 %i - 3.0, - 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6)                       3.545L-16
</pre></div>

<p>Complex data.
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;fft&quot;) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : fft (L);
(%o4) [0.5, 0.5, 0.25 %i - 0.25, (- 0.3536 %i) - 0.3536, 0.0, 0.5, 
                                        (- 0.25 %i) - 0.25, 0.3536 %i + 0.3536]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i, - 1.0, - 1.0, 1.0 - 1.0 %i, 
                                                             1.0 %i + 1.0, 1.0]
(%i6) lmax (abs (L2 - L));
(%o6)                       0.0
</pre></div>

<p>Computation of sine and cosine coefficients.
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;fft&quot;) $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, 5, 6, 7, 8] $
(%i4) n : length (L) $
(%i5) x : make_array (any, n) $
(%i6) fillarray (x, L) $
(%i7) y : fft (x) $
(%i8) a : make_array (any, n/2 + 1) $
(%i9) b : make_array (any, n/2 + 1) $
(%i10) a[0] : realpart (y[0]) $
(%i11) b[0] : 0 $
(%i12) for k : 1 thru n/2 - 1 do
   (a[k] : realpart (y[k] + y[n - k]),
    b[k] : imagpart (y[n - k] - y[k]));
(%o12)                        done
(%i13) a[n/2] : y[n/2] $
(%i14) b[n/2] : 0 $
(%i15) listarray (a);
(%o15)          [4.5, - 1.0, - 1.0, - 1.0, - 0.5]
(%i16) listarray (b);
(%o16)           [0, - 2.414, - 1.0, - .4142, 0]
(%i17) f(j) := sum (a[k]*cos(2*%pi*j*k/n) + b[k]*sin(2*%pi*j*k/n), 
                    k, 0, n/2) $
(%i18) makelist (float (f (j)), j, 0, n - 1);
(%o18)      [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
</pre></div>




</dd></dl>

<a name="real_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002freal_005ffft"></a><dl>
<dt><a name="index-real_005ffft"></a>Function: <strong>real_fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the fast Fourier transform of a real-valued sequence
<var>x</var>.  This is equivalent to performing <code>fft(x)</code>, except that
only the first <code>N/2+1</code> results are returned, where <code>N</code> is
the length of <var>x</var>.  <code>N</code> must be power of two.
</p>
<p>No check is made that <var>x</var> contains only real values.
</p>
<p>The symmetry properties of the Fourier transform of real sequences to
reduce he complexity.  In particular the first and last output values
of <code>real_fft</code> are purely real.  For larger sequences, <code>real_fft</code>
may be computed more quickly than <code>fft</code>.
</p>
<p>Since the output length is short, the normal <code><a href="#inverse_005ffft">inverse_fft</a></code> cannot
be directly used.  Use <code><a href="#inverse_005freal_005ffft">inverse_real_fft</a></code> to compute the inverse.
</p>


</dd></dl>

<a name="inverse_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002finverse_005freal_005ffft"></a><dl>
<dt><a name="index-inverse_005freal_005ffft"></a>Function: <strong>inverse_real_fft</strong> <em>(<var>y</var>)</em></dt>
<dd><p>Computes the inverse Fourier transform of <var>y</var>, which must have a
length of <code>N/2+1</code> where <code>N</code> is a power of two.  That is, the
input <var>x</var> is expected to be the output of <code>real_fft</code>.
</p>
<p>No check is made to ensure that the input has the correct format.
(The first and last elements must be purely real.)
</p>



</dd></dl>

<a name="bf_005finverse_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005finverse_005ffft"></a><dl>
<dt><a name="index-bf_005finverse_005ffft"></a>Function: <strong>bf_inverse_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the inverse complex fast Fourier transform.  This is the
bigfloat version of <code><a href="#inverse_005ffft">inverse_fft</a></code> that converts the input to
bigfloats and returns a bigfloat result.
</p>


</dd></dl>

<a name="bf_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005ffft"></a><dl>
<dt><a name="index-bf_005ffft"></a>Function: <strong>bf_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the forward complex fast Fourier transform.  This is the
bigfloat version of <code><a href="#fft">fft</a></code> that converts the input to
bigfloats and returns a bigfloat result.
</p>


</dd></dl>

<a name="bf_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005freal_005ffft"></a><dl>
<dt><a name="index-bf_005freal_005ffft"></a>Function: <strong>bf_real_fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the forward fast Fourier transform of a real-valued input
returning a bigfloat result.  This is the bigfloat version of
<code>real_fft</code>.
</p>



</dd></dl>

<a name="bf_005finverse_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005finverse_005freal_005ffft"></a><dl>
<dt><a name="index-bf_005finverse_005freal_005ffft"></a>Function: <strong>bf_inverse_real_fft</strong> <em>(<var>y</var>)</em></dt>
<dd><p>Computes the inverse fast Fourier transform with a real-valued
bigfloat output.  This is the bigfloat version of <code>inverse_real_fft</code>.
</p>



</dd></dl>

<a name="Item_003a-Numerical_002fnode_002fFunctions-and-Variables-for-FFTPACK5"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="n" rel="next">Functions and Variables for FFTPACK5</a>, Previous: <a href="maxima_84.html#Introduction-to-fast-Fourier-transform" accesskey="p" rel="previous">Introduction to fast Fourier transform</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>