1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions and Variables for fast Fourier transform</title>
<meta name="description" content="Maxima Manual: Functions and Variables for fast Fourier transform">
<meta name="keywords" content="Maxima Manual: Functions and Variables for fast Fourier transform">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Numerical" rel="up" title="Numerical">
<link href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" rel="next" title="Functions and Variables for FFTPACK5">
<link href="maxima_84.html#Introduction-to-fast-Fourier-transform" rel="previous" title="Introduction to fast Fourier transform">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-and-Variables-for-fast-Fourier-transform"></a>
<div class="header">
<p>
Next: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="n" rel="next">Functions and Variables for FFTPACK5</a>, Previous: <a href="maxima_84.html#Introduction-to-fast-Fourier-transform" accesskey="p" rel="previous">Introduction to fast Fourier transform</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-and-Variables-for-fft"></a>
<h3 class="section">21.2 Functions and Variables for fft</h3>
<a name="polartorect"></a><a name="Item_003a-Numerical_002fdeffn_002fpolartorect"></a><dl>
<dt><a name="index-polartorect"></a>Function: <strong>polartorect</strong> <em>(<var>r</var>, <var>t</var>)</em></dt>
<dd>
<p>Translates complex values of the form <code>r %e^(%i t)</code> to the form
<code>a + b %i</code>, where <var>r</var> is the magnitude and <var>t</var> is the phase.
<var>r</var> and <var>t</var> are 1-dimensional arrays of the same size.
The array size need not be a power of 2.
</p>
<p>The original values of the input arrays are
replaced by the real and imaginary parts, <code>a</code> and <code>b</code>, on return.
The outputs are calculated as
</p>
<div class="example">
<pre class="example">a = r cos(t)
b = r sin(t)
</pre></div>
<p><code><a href="#polartorect">polartorect</a></code> is the inverse function of <code><a href="#recttopolar">recttopolar</a></code>.
</p>
<p><code>load("fft")</code> loads this function. See also <code><a href="#fft">fft</a></code>.
</p>
</dd></dl>
<a name="recttopolar"></a><a name="Item_003a-Numerical_002fdeffn_002frecttopolar"></a><dl>
<dt><a name="index-recttopolar"></a>Function: <strong>recttopolar</strong> <em>(<var>a</var>, <var>b</var>)</em></dt>
<dd>
<p>Translates complex values of the form <code>a + b %i</code> to the form
<code>r %e^(%i t)</code>, where <var>a</var> is the real part and <var>b</var> is the imaginary
part. <var>a</var> and <var>b</var> are 1-dimensional arrays of the same size.
The array size need not be a power of 2.
</p>
<p>The original values of the input arrays are
replaced by the magnitude and angle, <code>r</code> and <code>t</code>, on return.
The outputs are calculated as
</p>
<div class="example">
<pre class="example">r = sqrt(a^2 + b^2)
t = atan2(b, a)
</pre></div>
<p>The computed angle is in the range <code>-%pi</code> to <code>%pi</code>.
</p>
<p><code>recttopolar</code> is the inverse function of <code><a href="#polartorect">polartorect</a></code>.
</p>
<p><code>load("fft")</code> loads this function. See also <code><a href="#fft">fft</a></code>.
</p>
</dd></dl>
<a name="inverse_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002finverse_005ffft"></a><dl>
<dt><a name="index-inverse_005ffft"></a>Function: <strong>inverse_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the inverse complex fast Fourier transform.
<var>y</var> is a list or array (named or unnamed) which contains the data to
transform. The number of elements must be a power of 2.
The elements must be literal numbers (integers, rationals, floats, or bigfloats)
or symbolic constants,
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are literal numbers
or symbolic constants.
</p>
<p><code>inverse_fft</code> returns a new object of the same type as <var>y</var>,
which is not modified.
Results are always computed as floats
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are floats.
If bigfloat precision is needed the function <code><a href="#bf_005finverse_005ffft">bf_inverse_fft</a></code> can
be used instead as a drop-in replacement of <code>inverse_fft</code> that is
slower, but supports bfloats.
</p>
<p>The inverse discrete Fourier transform is defined as follows.
Let <code>x</code> be the output of the inverse transform.
Then for <code>j</code> from 0 through <code>n - 1</code>,
</p>
<div class="example">
<pre class="example">x[j] = sum(y[k] exp(-2 %i %pi j k / n), k, 0, n - 1)
</pre></div>
<p>As there are various sign and normalization conventions possible,
this definition of the transform may differ from that used by other mathematical software.
</p>
<p><code>load("fft")</code> loads this function.
</p>
<p>See also <code><a href="#fft">fft</a></code> (forward transform), <code><a href="#recttopolar">recttopolar</a></code>, and
<code><a href="#polartorect">polartorect</a></code>.
</p>
<p>Examples:
</p>
<p>Real data.
</p>
<div class="example">
<pre class="example">(%i1) load ("fft") $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : inverse_fft (L);
(%o4) [0.0, 14.49 %i - .8284, 0.0, 2.485 %i + 4.828, 0.0,
4.828 - 2.485 %i, 0.0, - 14.49 %i - .8284]
(%i5) L2 : fft (L1);
(%o5) [1.0, 2.0 - 2.168L-19 %i, 3.0 - 7.525L-20 %i,
4.0 - 4.256L-19 %i, - 1.0, 2.168L-19 %i - 2.0,
7.525L-20 %i - 3.0, 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6) 3.545L-16
</pre></div>
<p>Complex data.
</p>
<div class="example">
<pre class="example">(%i1) load ("fft") $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : inverse_fft (L);
(%o4) [4.0, 2.711L-19 %i + 4.0, 2.0 %i - 2.0,
- 2.828 %i - 2.828, 0.0, 5.421L-20 %i + 4.0, - 2.0 %i - 2.0,
2.828 %i + 2.828]
(%i5) L2 : fft (L1);
(%o5) [4.066E-20 %i + 1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i,
1.55L-19 %i - 1.0, - 4.066E-20 %i - 1.0, 1.0 - 1.0 %i,
1.0 %i + 1.0, 1.0 - 7.368L-20 %i]
(%i6) lmax (abs (L2 - L));
(%o6) 6.841L-17
</pre></div>
</dd></dl>
<a name="fft"></a><a name="Item_003a-Numerical_002fdeffn_002ffft"></a><dl>
<dt><a name="index-fft"></a>Function: <strong>fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the complex fast Fourier transform.
<var>x</var> is a list or array (named or unnamed) which contains the data to
transform. The number of elements must be a power of 2.
The elements must be literal numbers (integers, rationals, floats, or bigfloats)
or symbolic constants,
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are literal numbers
or symbolic constants.
</p>
<p><code>fft</code> returns a new object of the same type as <var>x</var>,
which is not modified.
Results are always computed as floats
or expressions <code>a + b*%i</code> where <code>a</code> and <code>b</code> are floats.
If bigfloat precision is needed the function <code><a href="#bf_005ffft">bf_fft</a></code> can be used
instead as a drop-in replacement of <code>fft</code> that is slower, but
supports bfloats. In addition if it is known that the input consists
of only real values (no imaginary parts), <code><a href="#real_005ffft">real_fft</a></code> can be used
which is potentially faster.
</p>
<p>The discrete Fourier transform is defined as follows.
Let <code>y</code> be the output of the transform.
Then for <code>k</code> from 0 through <code>n - 1</code>,
</p>
<div class="example">
<pre class="example">y[k] = (1/n) sum(x[j] exp(+2 %i %pi j k / n), j, 0, n - 1)
</pre></div>
<p>As there are various sign and normalization conventions possible,
this definition of the transform may differ from that used by other mathematical software.
</p>
<p>When the data <var>x</var> are real,
real coefficients <code>a</code> and <code>b</code> can be computed such that
</p>
<div class="example">
<pre class="example">x[j] = sum(a[k]*cos(2*%pi*j*k/n)+b[k]*sin(2*%pi*j*k/n), k, 0, n/2)
</pre></div>
<p>with
</p>
<div class="example">
<pre class="example">a[0] = realpart (y[0])
b[0] = 0
</pre></div>
<p>and, for k from 1 through n/2 - 1,
</p>
<div class="example">
<pre class="example">a[k] = realpart (y[k] + y[n - k])
b[k] = imagpart (y[n - k] - y[k])
</pre></div>
<p>and
</p>
<div class="example">
<pre class="example">a[n/2] = realpart (y[n/2])
b[n/2] = 0
</pre></div>
<p><code>load("fft")</code> loads this function.
</p>
<p>See also <code><a href="#inverse_005ffft">inverse_fft</a></code> (inverse transform),
<code><a href="#recttopolar">recttopolar</a></code>, and <code><a href="#polartorect">polartorect</a></code>.. See <code><a href="#real_005ffft">real_fft</a></code>
for FFTs of a real-valued input, and <code><a href="#bf_005ffft">bf_fft</a></code> and
<code><a href="#bf_005freal_005ffft">bf_real_fft</a></code> for operations on bigfloat values. Finally, for
transforms of any size (but limited to float values), see
<code><a href="maxima_86.html#fftpack5_005ffft">fftpack5_fft</a></code> and <code><a href="maxima_86.html#fftpack5_005freal_005ffft">fftpack5_real_fft</a></code>.
</p>
<p>Examples:
</p>
<p>Real data.
</p>
<div class="example">
<pre class="example">(%i1) load ("fft") $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, -1, -2, -3, -4] $
(%i4) L1 : fft (L);
(%o4) [0.0, 1.811 %i - .1036, 0.0, 0.3107 %i + .6036, 0.0,
0.6036 - 0.3107 %i, 0.0, (- 1.811 %i) - 0.1036]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0, 2.168L-19 %i + 2.0, 7.525L-20 %i + 3.0,
4.256L-19 %i + 4.0, - 1.0, - 2.168L-19 %i - 2.0,
- 7.525L-20 %i - 3.0, - 4.256L-19 %i - 4.0]
(%i6) lmax (abs (L2 - L));
(%o6) 3.545L-16
</pre></div>
<p>Complex data.
</p>
<div class="example">
<pre class="example">(%i1) load ("fft") $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 1 + %i, 1 - %i, -1, -1, 1 - %i, 1 + %i, 1] $
(%i4) L1 : fft (L);
(%o4) [0.5, 0.5, 0.25 %i - 0.25, (- 0.3536 %i) - 0.3536, 0.0, 0.5,
(- 0.25 %i) - 0.25, 0.3536 %i + 0.3536]
(%i5) L2 : inverse_fft (L1);
(%o5) [1.0, 1.0 %i + 1.0, 1.0 - 1.0 %i, - 1.0, - 1.0, 1.0 - 1.0 %i,
1.0 %i + 1.0, 1.0]
(%i6) lmax (abs (L2 - L));
(%o6) 0.0
</pre></div>
<p>Computation of sine and cosine coefficients.
</p>
<div class="example">
<pre class="example">(%i1) load ("fft") $
(%i2) fpprintprec : 4 $
(%i3) L : [1, 2, 3, 4, 5, 6, 7, 8] $
(%i4) n : length (L) $
(%i5) x : make_array (any, n) $
(%i6) fillarray (x, L) $
(%i7) y : fft (x) $
(%i8) a : make_array (any, n/2 + 1) $
(%i9) b : make_array (any, n/2 + 1) $
(%i10) a[0] : realpart (y[0]) $
(%i11) b[0] : 0 $
(%i12) for k : 1 thru n/2 - 1 do
(a[k] : realpart (y[k] + y[n - k]),
b[k] : imagpart (y[n - k] - y[k]));
(%o12) done
(%i13) a[n/2] : y[n/2] $
(%i14) b[n/2] : 0 $
(%i15) listarray (a);
(%o15) [4.5, - 1.0, - 1.0, - 1.0, - 0.5]
(%i16) listarray (b);
(%o16) [0, - 2.414, - 1.0, - .4142, 0]
(%i17) f(j) := sum (a[k]*cos(2*%pi*j*k/n) + b[k]*sin(2*%pi*j*k/n),
k, 0, n/2) $
(%i18) makelist (float (f (j)), j, 0, n - 1);
(%o18) [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]
</pre></div>
</dd></dl>
<a name="real_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002freal_005ffft"></a><dl>
<dt><a name="index-real_005ffft"></a>Function: <strong>real_fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the fast Fourier transform of a real-valued sequence
<var>x</var>. This is equivalent to performing <code>fft(x)</code>, except that
only the first <code>N/2+1</code> results are returned, where <code>N</code> is
the length of <var>x</var>. <code>N</code> must be power of two.
</p>
<p>No check is made that <var>x</var> contains only real values.
</p>
<p>The symmetry properties of the Fourier transform of real sequences to
reduce he complexity. In particular the first and last output values
of <code>real_fft</code> are purely real. For larger sequences, <code>real_fft</code>
may be computed more quickly than <code>fft</code>.
</p>
<p>Since the output length is short, the normal <code><a href="#inverse_005ffft">inverse_fft</a></code> cannot
be directly used. Use <code><a href="#inverse_005freal_005ffft">inverse_real_fft</a></code> to compute the inverse.
</p>
</dd></dl>
<a name="inverse_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002finverse_005freal_005ffft"></a><dl>
<dt><a name="index-inverse_005freal_005ffft"></a>Function: <strong>inverse_real_fft</strong> <em>(<var>y</var>)</em></dt>
<dd><p>Computes the inverse Fourier transform of <var>y</var>, which must have a
length of <code>N/2+1</code> where <code>N</code> is a power of two. That is, the
input <var>x</var> is expected to be the output of <code>real_fft</code>.
</p>
<p>No check is made to ensure that the input has the correct format.
(The first and last elements must be purely real.)
</p>
</dd></dl>
<a name="bf_005finverse_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005finverse_005ffft"></a><dl>
<dt><a name="index-bf_005finverse_005ffft"></a>Function: <strong>bf_inverse_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the inverse complex fast Fourier transform. This is the
bigfloat version of <code><a href="#inverse_005ffft">inverse_fft</a></code> that converts the input to
bigfloats and returns a bigfloat result.
</p>
</dd></dl>
<a name="bf_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005ffft"></a><dl>
<dt><a name="index-bf_005ffft"></a>Function: <strong>bf_fft</strong> <em>(<var>y</var>)</em></dt>
<dd>
<p>Computes the forward complex fast Fourier transform. This is the
bigfloat version of <code><a href="#fft">fft</a></code> that converts the input to
bigfloats and returns a bigfloat result.
</p>
</dd></dl>
<a name="bf_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005freal_005ffft"></a><dl>
<dt><a name="index-bf_005freal_005ffft"></a>Function: <strong>bf_real_fft</strong> <em>(<var>x</var>)</em></dt>
<dd>
<p>Computes the forward fast Fourier transform of a real-valued input
returning a bigfloat result. This is the bigfloat version of
<code>real_fft</code>.
</p>
</dd></dl>
<a name="bf_005finverse_005freal_005ffft"></a><a name="Item_003a-Numerical_002fdeffn_002fbf_005finverse_005freal_005ffft"></a><dl>
<dt><a name="index-bf_005finverse_005freal_005ffft"></a>Function: <strong>bf_inverse_real_fft</strong> <em>(<var>y</var>)</em></dt>
<dd><p>Computes the inverse fast Fourier transform with a real-valued
bigfloat output. This is the bigfloat version of <code>inverse_real_fft</code>.
</p>
</dd></dl>
<a name="Item_003a-Numerical_002fnode_002fFunctions-and-Variables-for-FFTPACK5"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="n" rel="next">Functions and Variables for FFTPACK5</a>, Previous: <a href="maxima_84.html#Introduction-to-fast-Fourier-transform" accesskey="p" rel="previous">Introduction to fast Fourier transform</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|