File: maxima_87.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (276 lines) | stat: -rw-r--r-- 14,871 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions for numerical solution of equations</title>

<meta name="description" content="Maxima Manual: Functions for numerical solution of equations">
<meta name="keywords" content="Maxima Manual: Functions for numerical solution of equations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Numerical" rel="up" title="Numerical">
<link href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" rel="next" title="Introduction to numerical solution of differential equations">
<link href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" rel="previous" title="Functions and Variables for FFTPACK5">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white;  margin-left: 8%; margin-right: 13%;
      font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
    padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
    padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
    font-family: sans-serif}
div.synopsisbox {
    border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
    padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
    padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
    background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
    padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}

-->
</style>

<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>

<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-for-numerical-solution-of-equations"></a>
<div class="header">
<p>
Next: <a href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" accesskey="n" rel="next">Introduction to numerical solution of differential equations</a>, Previous: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="p" rel="previous">Functions and Variables for FFTPACK5</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-for-numerical-solution-of-equations-1"></a>
<h3 class="section">21.4 Functions for numerical solution of equations</h3>

<a name="horner"></a><a name="Item_003a-Numerical_002fdeffn_002fhorner"></a><dl>
<dt><a name="index-horner"></a>Function: <strong>horner</strong> <em><br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>horner</tt> (<var>expr</var>, <var>x</var>) <br>&nbsp;&nbsp;&nbsp;&nbsp;<tt>horner</tt> (<var>expr</var>)</em></dt>
<dd>
<p>Returns a rearranged representation of <var>expr</var> as in Horner&rsquo;s rule, using
<var>x</var> as the main variable if it is specified.  <code>x</code> may be omitted in
which case the main variable of the canonical rational expression form of
<var>expr</var> is used.
</p>
<p><code>horner</code> sometimes improves stability if <code>expr</code> is
to be numerically evaluated.  It is also useful if Maxima is used to
generate programs to be run in Fortran.  See also <code><a href="maxima_41.html#stringout">stringout</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155;
                           2
(%o1)             1.e-155 x  - 5.5 x + 5.2e+155
(%i2) expr2: horner (%, x), keepfloat: true;
(%o2)         1.0 ((1.e-155 x - 5.5) x + 5.2e+155)
(%i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:

 arithmetic error FLOATING-POINT-OVERFLOW signalled

Automatically continuing.
To enable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1e155);
(%o4)                 7.00000000000001e+154
</pre></div>




</dd></dl>

<a name="find_005froot"></a><a name="bf_005ffind_005froot"></a><a name="find_005froot_005ferror"></a><a name="find_005froot_005fabs"></a><a name="find_005froot_005frel"></a><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot"></a><dl>
<dt><a name="index-find_005froot"></a>Function: <strong>find_root</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dt><a name="index-find_005froot-1"></a>Function: <strong>find_root</strong> <em>(<var>f</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002fbf_005ffind_005froot"></a></dd><dt><a name="index-bf_005ffind_005froot"></a>Function: <strong>bf_find_root</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dt><a name="index-bf_005ffind_005froot-1"></a>Function: <strong>bf_find_root</strong> <em>(<var>f</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005ferror"></a></dd><dt><a name="index-find_005froot_005ferror"></a>Option variable: <strong>find_root_error</strong></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005fabs"></a></dd><dt><a name="index-find_005froot_005fabs"></a>Option variable: <strong>find_root_abs</strong></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005frel"></a></dd><dt><a name="index-find_005froot_005frel"></a>Option variable: <strong>find_root_rel</strong></dt>
<dd>
<p>Finds a root of the expression <var>expr</var> or the function <var>f</var> over the
closed interval <em>[<var>a</var>, <var>b</var>]</em>.  The expression <var>expr</var> may be an
equation, in which case <code><a href="#find_005froot">find_root</a></code> seeks a root of
<code>lhs(<var>expr</var>) - rhs(<var>expr</var>)</code>.
</p>
<p>Given that Maxima can evaluate <var>expr</var> or <var>f</var> over
<em>[<var>a</var>, <var>b</var>]</em> and that <var>expr</var> or <var>f</var> is continuous,
<code>find_root</code> is guaranteed to find the root,
or one of the roots if there is more than one.
</p>
<p><code>find_root</code> initially applies binary search.
If the function in question appears to be smooth enough,
<code>find_root</code> applies linear interpolation instead.
</p>
<p><code>bf_find_root</code> is a bigfloat version of <code>find_root</code>.  The
function is computed using bigfloat arithmetic and a bigfloat result
is returned.  Otherwise, <code>bf_find_root</code> is identical to
<code>find_root</code>, and the following description is equally applicable
to <code>bf_find_root</code>.
</p>
<p>The accuracy of <code>find_root</code> is governed by <code>abserr</code> and
<code>relerr</code>, which are optional keyword arguments to
<code>find_root</code>.  These keyword arguments take the form
<code>key=val</code>.  The keyword arguments are
</p>
<dl compact="compact">
<dt><code>abserr</code></dt>
<dd><p>Desired absolute error of function value at root.  Default is
<code>find_root_abs</code>.
</p></dd>
<dt><code>relerr</code></dt>
<dd><p>Desired relative error of root.  Default is <code>find_root_rel</code>.
</p></dd>
</dl>

<p><code>find_root</code> stops when the function in question evaluates to
something less than or equal to <code>abserr</code>, or if successive
approximants <var>x_0</var>, <var>x_1</var> differ by no more than <code>relerr
* max(abs(x_0), abs(x_1))</code>.  The default values of
<code>find_root_abs</code> and <code>find_root_rel</code> are both zero.
</p>
<p><code>find_root</code> expects the function in question to have a different sign at
the endpoints of the search interval.
When the function evaluates to a number at both endpoints
and these numbers have the same sign,
the behavior of <code>find_root</code> is governed by <code>find_root_error</code>.
When <code>find_root_error</code> is <code>true</code>,
<code>find_root</code> prints an error message.
Otherwise <code>find_root</code> returns the value of <code>find_root_error</code>.
The default value of <code>find_root_error</code> is <code>true</code>.
</p>
<p>If <var>f</var> evaluates to something other than a number at any step in the search
algorithm, <code>find_root</code> returns a partially-evaluated <code>find_root</code>
expression.
</p>
<p>The order of <var>a</var> and <var>b</var> is ignored; the region in which a root is
sought is <em>[min(<var>a</var>, <var>b</var>), max(<var>a</var>, <var>b</var>)]</em>.
</p>
<p>Examples:
</p>

<div class="example">
<pre class="example">(%i1) f(x) := sin(x) - x/2;
                                        x
(%o1)                  f(x) := sin(x) - -
                                        2
(%i2) find_root (sin(x) - x/2, x, 0.1, %pi);
(%o2)                   1.895494267033981
(%i3) find_root (sin(x) = x/2, x, 0.1, %pi);
(%o3)                   1.895494267033981
(%i4) find_root (f(x), x, 0.1, %pi);
(%o4)                   1.895494267033981
(%i5) find_root (f, 0.1, %pi);
(%o5)                   1.895494267033981
(%i6) find_root (exp(x) = y, x, 0, 100);
                            x
(%o6)           find_root(%e  = y, x, 0.0, 100.0)
(%i7) find_root (exp(x) = y, x, 0, 100), y = 10;
(%o7)                   2.302585092994046
(%i8) log (10.0);
(%o8)                   2.302585092994046
(%i9) fpprec:32;
(%o9)                           32
(%i10) bf_find_root (exp(x) = y, x, 0, 100), y = 10;
(%o10)                  2.3025850929940456840179914546844b0
(%i11) log(10b0);
(%o11)                  2.3025850929940456840179914546844b0
</pre></div>





</dd></dl>

<a name="newton"></a><a name="Item_003a-Numerical_002fdeffn_002fnewton"></a><dl>
<dt><a name="index-newton"></a>Function: <strong>newton</strong> <em>(<var>expr</var>, <var>x</var>, <var>x_0</var>, <var>eps</var>)</em></dt>
<dd>
<p>Returns an approximate solution of <code><var>expr</var> = 0</code> by Newton&rsquo;s method,
considering <var>expr</var> to be a function of one variable, <var>x</var>.
The search begins with <code><var>x</var> = <var>x_0</var></code>
and proceeds until <code>abs(<var>expr</var>) &lt; <var>eps</var></code>
(with <var>expr</var> evaluated at the current value of <var>x</var>).
</p>
<p><code>newton</code> allows undefined variables to appear in <var>expr</var>,
so long as the termination test <code>abs(<var>expr</var>) &lt; <var>eps</var></code> evaluates
to <code>true</code> or <code>false</code>.
Thus it is not necessary that <var>expr</var> evaluate to a number.
</p>
<p><code>load(&quot;newton1&quot;)</code> loads this function.
</p>
<p>See also <code><a href="maxima_79.html#realroots">realroots</a></code>, <code><a href="maxima_79.html#allroots">allroots</a></code>, <code><a href="#find_005froot">find_root</a></code> and
<code><a href="maxima_219.html#mnewton">mnewton</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) load (&quot;newton1&quot;);
(%o1)  /maxima/share/numeric/newton1.mac
(%i2) newton (cos (u), u, 1, 1/100);
(%o2)                   1.570675277161251
(%i3) ev (cos (u), u = %);
(%o3)                 1.2104963335033529e-4
(%i4) assume (a &gt; 0);
(%o4)                        [a &gt; 0]
(%i5) newton (x^2 - a^2, x, a/2, a^2/100);
(%o5)                  1.00030487804878 a
(%i6) ev (x^2 - a^2, x = %);
                                           2
(%o6)                6.098490481853958e-4 a
</pre></div>





</dd></dl>

<a name="Item_003a-Numerical_002fnode_002fIntroduction-to-numerical-solution-of-differential-equations"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" accesskey="n" rel="next">Introduction to numerical solution of differential equations</a>, Previous: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="p" rel="previous">Functions and Variables for FFTPACK5</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> &nbsp; [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>