1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 5.1, http://www.gnu.org/software/texinfo/ -->
<head>
<title>Maxima Manual: Functions for numerical solution of equations</title>
<meta name="description" content="Maxima Manual: Functions for numerical solution of equations">
<meta name="keywords" content="Maxima Manual: Functions for numerical solution of equations">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<link href="maxima_toc.html#Top" rel="start" title="Top">
<link href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" rel="index" title="Указатель функций и переменных">
<link href="maxima_toc.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="maxima_83.html#Numerical" rel="up" title="Numerical">
<link href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" rel="next" title="Introduction to numerical solution of differential equations">
<link href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" rel="previous" title="Functions and Variables for FFTPACK5">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.indentedblock {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
div.smalllisp {margin-left: 3.2em}
kbd {font-style:oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nocodebreak {white-space:nowrap}
span.nolinebreak {white-space:nowrap}
span.roman {font-family:serif; font-weight:normal}
span.sansserif {font-family:sans-serif; font-weight:normal}
ul.no-bullet {list-style: none}
body {color: black; background: white; margin-left: 8%; margin-right: 13%;
font-family: "FreeSans", sans-serif}
h1 {font-size: 150%; font-family: "FreeSans", sans-serif}
h2 {font-size: 125%; font-family: "FreeSans", sans-serif}
h3 {font-size: 100%; font-family: "FreeSans", sans-serif}
a[href] {color: rgb(0,0,255); text-decoration: none;}
a[href]:hover {background: rgb(220,220,220);}
div.textbox {border: solid; border-width: thin; padding-top: 1em;
padding-bottom: 1em; padding-left: 2em; padding-right: 2em}
div.titlebox {border: none; padding-top: 1em; padding-bottom: 1em;
padding-left: 2em; padding-right: 2em; background: rgb(200,255,255);
font-family: sans-serif}
div.synopsisbox {
border: none; padding-top: 1em; padding-bottom: 1em; padding-left: 2em;
padding-right: 2em; background: rgb(255,220,255);}
pre.example {border: 1px solid rgb(180,180,180); padding-top: 1em;
padding-bottom: 1em; padding-left: 1em; padding-right: 1em;
background-color: rgb(238,238,255)}
div.spacerbox {border: none; padding-top: 2em; padding-bottom: 2em}
div.image {margin: 0; padding: 1em; text-align: center}
div.categorybox {border: 1px solid gray; padding-top: 1em; padding-bottom: 1em;
padding-left: 1em; padding-right: 1em; background: rgb(247,242,220)}
img {max-width:80%; max-height: 80%; display: block; margin-left: auto; margin-right: auto}
-->
</style>
<link rel="icon" href="figures/favicon.ico">
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6>"></script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body lang="ru" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
<a name="Functions-for-numerical-solution-of-equations"></a>
<div class="header">
<p>
Next: <a href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" accesskey="n" rel="next">Introduction to numerical solution of differential equations</a>, Previous: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="p" rel="previous">Functions and Variables for FFTPACK5</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Functions-for-numerical-solution-of-equations-1"></a>
<h3 class="section">21.4 Functions for numerical solution of equations</h3>
<a name="horner"></a><a name="Item_003a-Numerical_002fdeffn_002fhorner"></a><dl>
<dt><a name="index-horner"></a>Function: <strong>horner</strong> <em><br> <tt>horner</tt> (<var>expr</var>, <var>x</var>) <br> <tt>horner</tt> (<var>expr</var>)</em></dt>
<dd>
<p>Returns a rearranged representation of <var>expr</var> as in Horner’s rule, using
<var>x</var> as the main variable if it is specified. <code>x</code> may be omitted in
which case the main variable of the canonical rational expression form of
<var>expr</var> is used.
</p>
<p><code>horner</code> sometimes improves stability if <code>expr</code> is
to be numerically evaluated. It is also useful if Maxima is used to
generate programs to be run in Fortran. See also <code><a href="maxima_41.html#stringout">stringout</a></code>.
</p>
<div class="example">
<pre class="example">(%i1) expr: 1e-155*x^2 - 5.5*x + 5.2e155;
2
(%o1) 1.e-155 x - 5.5 x + 5.2e+155
(%i2) expr2: horner (%, x), keepfloat: true;
(%o2) 1.0 ((1.e-155 x - 5.5) x + 5.2e+155)
(%i3) ev (expr, x=1e155);
Maxima encountered a Lisp error:
arithmetic error FLOATING-POINT-OVERFLOW signalled
Automatically continuing.
To enable the Lisp debugger set *debugger-hook* to nil.
(%i4) ev (expr2, x=1e155);
(%o4) 7.00000000000001e+154
</pre></div>
</dd></dl>
<a name="find_005froot"></a><a name="bf_005ffind_005froot"></a><a name="find_005froot_005ferror"></a><a name="find_005froot_005fabs"></a><a name="find_005froot_005frel"></a><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot"></a><dl>
<dt><a name="index-find_005froot"></a>Function: <strong>find_root</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dt><a name="index-find_005froot-1"></a>Function: <strong>find_root</strong> <em>(<var>f</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002fbf_005ffind_005froot"></a></dd><dt><a name="index-bf_005ffind_005froot"></a>Function: <strong>bf_find_root</strong> <em>(<var>expr</var>, <var>x</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dt><a name="index-bf_005ffind_005froot-1"></a>Function: <strong>bf_find_root</strong> <em>(<var>f</var>, <var>a</var>, <var>b</var>, [<var>abserr</var>, <var>relerr</var>])</em></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005ferror"></a></dd><dt><a name="index-find_005froot_005ferror"></a>Option variable: <strong>find_root_error</strong></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005fabs"></a></dd><dt><a name="index-find_005froot_005fabs"></a>Option variable: <strong>find_root_abs</strong></dt>
<dd><a name="Item_003a-Numerical_002fdeffn_002ffind_005froot_005frel"></a></dd><dt><a name="index-find_005froot_005frel"></a>Option variable: <strong>find_root_rel</strong></dt>
<dd>
<p>Finds a root of the expression <var>expr</var> or the function <var>f</var> over the
closed interval <em>[<var>a</var>, <var>b</var>]</em>. The expression <var>expr</var> may be an
equation, in which case <code><a href="#find_005froot">find_root</a></code> seeks a root of
<code>lhs(<var>expr</var>) - rhs(<var>expr</var>)</code>.
</p>
<p>Given that Maxima can evaluate <var>expr</var> or <var>f</var> over
<em>[<var>a</var>, <var>b</var>]</em> and that <var>expr</var> or <var>f</var> is continuous,
<code>find_root</code> is guaranteed to find the root,
or one of the roots if there is more than one.
</p>
<p><code>find_root</code> initially applies binary search.
If the function in question appears to be smooth enough,
<code>find_root</code> applies linear interpolation instead.
</p>
<p><code>bf_find_root</code> is a bigfloat version of <code>find_root</code>. The
function is computed using bigfloat arithmetic and a bigfloat result
is returned. Otherwise, <code>bf_find_root</code> is identical to
<code>find_root</code>, and the following description is equally applicable
to <code>bf_find_root</code>.
</p>
<p>The accuracy of <code>find_root</code> is governed by <code>abserr</code> and
<code>relerr</code>, which are optional keyword arguments to
<code>find_root</code>. These keyword arguments take the form
<code>key=val</code>. The keyword arguments are
</p>
<dl compact="compact">
<dt><code>abserr</code></dt>
<dd><p>Desired absolute error of function value at root. Default is
<code>find_root_abs</code>.
</p></dd>
<dt><code>relerr</code></dt>
<dd><p>Desired relative error of root. Default is <code>find_root_rel</code>.
</p></dd>
</dl>
<p><code>find_root</code> stops when the function in question evaluates to
something less than or equal to <code>abserr</code>, or if successive
approximants <var>x_0</var>, <var>x_1</var> differ by no more than <code>relerr
* max(abs(x_0), abs(x_1))</code>. The default values of
<code>find_root_abs</code> and <code>find_root_rel</code> are both zero.
</p>
<p><code>find_root</code> expects the function in question to have a different sign at
the endpoints of the search interval.
When the function evaluates to a number at both endpoints
and these numbers have the same sign,
the behavior of <code>find_root</code> is governed by <code>find_root_error</code>.
When <code>find_root_error</code> is <code>true</code>,
<code>find_root</code> prints an error message.
Otherwise <code>find_root</code> returns the value of <code>find_root_error</code>.
The default value of <code>find_root_error</code> is <code>true</code>.
</p>
<p>If <var>f</var> evaluates to something other than a number at any step in the search
algorithm, <code>find_root</code> returns a partially-evaluated <code>find_root</code>
expression.
</p>
<p>The order of <var>a</var> and <var>b</var> is ignored; the region in which a root is
sought is <em>[min(<var>a</var>, <var>b</var>), max(<var>a</var>, <var>b</var>)]</em>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) f(x) := sin(x) - x/2;
x
(%o1) f(x) := sin(x) - -
2
(%i2) find_root (sin(x) - x/2, x, 0.1, %pi);
(%o2) 1.895494267033981
(%i3) find_root (sin(x) = x/2, x, 0.1, %pi);
(%o3) 1.895494267033981
(%i4) find_root (f(x), x, 0.1, %pi);
(%o4) 1.895494267033981
(%i5) find_root (f, 0.1, %pi);
(%o5) 1.895494267033981
(%i6) find_root (exp(x) = y, x, 0, 100);
x
(%o6) find_root(%e = y, x, 0.0, 100.0)
(%i7) find_root (exp(x) = y, x, 0, 100), y = 10;
(%o7) 2.302585092994046
(%i8) log (10.0);
(%o8) 2.302585092994046
(%i9) fpprec:32;
(%o9) 32
(%i10) bf_find_root (exp(x) = y, x, 0, 100), y = 10;
(%o10) 2.3025850929940456840179914546844b0
(%i11) log(10b0);
(%o11) 2.3025850929940456840179914546844b0
</pre></div>
</dd></dl>
<a name="newton"></a><a name="Item_003a-Numerical_002fdeffn_002fnewton"></a><dl>
<dt><a name="index-newton"></a>Function: <strong>newton</strong> <em>(<var>expr</var>, <var>x</var>, <var>x_0</var>, <var>eps</var>)</em></dt>
<dd>
<p>Returns an approximate solution of <code><var>expr</var> = 0</code> by Newton’s method,
considering <var>expr</var> to be a function of one variable, <var>x</var>.
The search begins with <code><var>x</var> = <var>x_0</var></code>
and proceeds until <code>abs(<var>expr</var>) < <var>eps</var></code>
(with <var>expr</var> evaluated at the current value of <var>x</var>).
</p>
<p><code>newton</code> allows undefined variables to appear in <var>expr</var>,
so long as the termination test <code>abs(<var>expr</var>) < <var>eps</var></code> evaluates
to <code>true</code> or <code>false</code>.
Thus it is not necessary that <var>expr</var> evaluate to a number.
</p>
<p><code>load("newton1")</code> loads this function.
</p>
<p>See also <code><a href="maxima_79.html#realroots">realroots</a></code>, <code><a href="maxima_79.html#allroots">allroots</a></code>, <code><a href="#find_005froot">find_root</a></code> and
<code><a href="maxima_219.html#mnewton">mnewton</a></code>.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">(%i1) load ("newton1");
(%o1) /maxima/share/numeric/newton1.mac
(%i2) newton (cos (u), u, 1, 1/100);
(%o2) 1.570675277161251
(%i3) ev (cos (u), u = %);
(%o3) 1.2104963335033529e-4
(%i4) assume (a > 0);
(%o4) [a > 0]
(%i5) newton (x^2 - a^2, x, a/2, a^2/100);
(%o5) 1.00030487804878 a
(%i6) ev (x^2 - a^2, x = %);
2
(%o6) 6.098490481853958e-4 a
</pre></div>
</dd></dl>
<a name="Item_003a-Numerical_002fnode_002fIntroduction-to-numerical-solution-of-differential-equations"></a><hr>
<div class="header">
<p>
Next: <a href="maxima_88.html#Introduction-to-numerical-solution-of-differential-equations" accesskey="n" rel="next">Introduction to numerical solution of differential equations</a>, Previous: <a href="maxima_86.html#Functions-and-Variables-for-FFTPACK5" accesskey="p" rel="previous">Functions and Variables for FFTPACK5</a>, Up: <a href="maxima_83.html#Numerical" accesskey="u" rel="up">Numerical</a> [<a href="maxima_toc.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="maxima_264.html#g_t_0423_043a_0430_0437_0430_0442_0435_043b_044c-_0444_0443_043d_043a_0446_0438_0439-_0438-_043f_0435_0440_0435_043c_0435_043d_043d_044b_0445" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|