File: simplex.texi

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (352 lines) | stat: -rw-r--r-- 10,130 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
@menu
* Introduction to simplex::
* Functions and Variables for simplex::
@end menu

@node Introduction to simplex, Functions and Variables for simplex, simplex-pkg, simplex-pkg
@section Introduction to simplex

@code{simplex} is a package for linear optimization using the simplex algorithm.

Example:

@c ===beg===
@c load("simplex")$
@c minimize_lp(x+y, [3*x+2*y>2, x+4*y>3]);
@c ===end===
@example
(%i1) load("simplex")$
(%i2) minimize_lp(x+y, [3*x+2*y>2, x+4*y>3]);
                  9        7       1
(%o2)            [--, [y = --, x = -]]
                  10       10      5
@end example

@opencatbox{Categories:}
@category{Numerical methods} 
@category{Optimization}
@category{Share packages}
@category{Package simplex}
@closecatbox

@subsection Tests for simplex

There are some tests in the directory @code{share/simplex/Tests}.

@subsubsection klee_minty

The function @code{klee_minty} produces input for @code{linear_program}, for which
exponential time for solving is required without scaling.

Example:

@example
load("klee_minty")$
apply(linear_program, klee_minty(6));
@end example

A better approach:

@example
epsilon_sx : 0$
scale_sx : true$
apply(linear_program, klee_minty(10));
@end example

@subsubsection NETLIB

Some smaller problems from netlib (@url{https://www.netlib.org/lp/data/})
test suite are converted to a format, readable by Maxima. Problems are
@code{adlittle}, @code{afiro}, @code{kb2}, @code{sc50a} and
@code{share2b}. Each problem has three input files in CSV format for
matrix @var{A} and vectors @var{b} and @var{c}.

Example:

@example
A : read_matrix("adlittle_A.csv", 'csv)$
b : read_list("adlittle_b.csv", 'csv)$
c : read_list("adlittle_c.csv", 'csv)$
linear_program(A, b, c)$
%[2];
=> 225494.9631623802
@end example

Results:

@c see simplex/Tests/netlib.mac
@example
PROBLEM        MINIMUM                  SCALING
adlittle       +2.2549496316E+05        false
afiro          -4.6475314286E+02        false
kb2            -1.7499001299E+03        true
sc50a          -6.4575077059E+01        false
share2b        -4.1573518187E+02        false
@end example

The Netlib website @url{https://www.netlib.org/lp/data/readme} lists the values as

@example
PROBLEM        MINIMUM
adlittle       +2.2549496316E+05
afiro          -4.6475314286E+02
kb2            -1.7499001299E+03
sc50a          -6.4575077059E+01
share2b        -4.1573224074E+02
@end example

@node Functions and Variables for simplex,  , Introduction to simplex, simplex-pkg
@section Functions and Variables for simplex

@anchor{epsilon_lp}
@defvr {Option variable} epsilon_lp
Default value: @code{10^-8}

Epsilon used for numerical computations in @code{linear_program}; it is
set to 0 in @code{linear_program} when all inputs are rational.

Example:

@c ===beg===
@c load("simplex")$
@c minimize_lp(-x, [1e-9*x + y <= 1], [x,y]);
@c minimize_lp(-x, [10^-9*x + y <= 1], [x,y]);
@c minimize_lp(-x, [1e-9*x + y <= 1], [x,y]), epsilon_lp=0;
@c ===end===
@example
(%i1) load("simplex")$

(%i2) minimize_lp(-x, [1e-9*x + y <= 1], [x,y]);
Warning: linear_program(A,b,c): non-rat inputs found, epsilon_lp= 1.0e-8
Warning: Solution may be incorrect.
(%o2)                        Problem not bounded!
(%i3) minimize_lp(-x, [10^-9*x + y <= 1], [x,y]);
(%o3)               [- 1000000000, [y = 0, x = 1000000000]]
(%i4) minimize_lp(-x, [1e-9*x + y <= 1], [x,y]), epsilon_lp=0;
(%o4)     [- 9.999999999999999e+8, [y = 0, x = 9.999999999999999e+8]]
@end example

See also: @mref{linear_program}, @mref{ratnump}.

@opencatbox{Categories:}
@category{Package simplex}
@closecatbox

@end defvr

@anchor{linear_program}
@deffn {Function} linear_program (@var{A}, @var{b}, @var{c})

@code{linear_program} is an implementation of the simplex algorithm.
@code{linear_program(A, b, c)} computes a vector @var{x} for which
@code{c.x} is minimum possible among vectors for which @code{A.x = b}
and @code{x >= 0}. Argument @var{A} is a matrix and arguments @var{b}
and @var{c} are lists.

@code{linear_program} returns a list which contains the minimizing
vector @var{x} and the minimum value @code{c.x}. If the problem is not
bounded, it returns "Problem not bounded!" and if the problem is not
feasible, it returns "Problem not feasible!".

To use this function first load the @code{simplex} package with
@code{load("simplex");}.

Example:

@c ===beg===
@c A: matrix([1,1,-1,0], [2,-3,0,-1], [4,-5,0,0])$
@c b: [1,1,6]$
@c c: [1,-2,0,0]$
@c linear_program(A, b, c);
@c ===end===
@example
(%i2) A: matrix([1,1,-1,0], [2,-3,0,-1], [4,-5,0,0])$
(%i3) b: [1,1,6]$
(%i4) c: [1,-2,0,0]$
(%i5) linear_program(A, b, c);
                   13     19        3
(%o5)            [[--, 4, --, 0], - -]
                   2      2         2
@end example

See also: @mref{minimize_lp}, @mref{scale_lp}, and @mref{epsilon_lp}.

@opencatbox{Categories:}
@category{Package simplex}
@category{Numerical methods}
@closecatbox

@end deffn

@anchor{maximize_lp}
@deffn {Function} maximize_lp (@var{obj}, @var{cond}, [@var{pos}])

Maximizes linear objective function @var{obj} subject to some linear
constraints @var{cond}. See @mref{minimize_lp} for detailed
description of arguments and return value.


See also: @mref{minimize_lp}.

@opencatbox{Categories:}
@category{Package simplex}
@category{Numerical methods}
@closecatbox

@end deffn

@anchor{minimize_lp}
@deffn {Function} minimize_lp (@var{obj}, @var{cond}, [@var{pos}])

Minimizes a linear objective function @var{obj} subject to some linear
constraints @var{cond}. @var{cond} a list of linear equations or
inequalities. In strict inequalities @code{>} is replaced by @code{>=}
and @code{<} by @code{<=}. The optional argument @var{pos} is a list
of decision variables which are assumed to be positive.

If the minimum exists, @code{minimize_lp} returns a list which
contains the minimum value of the objective function and a list of
decision variable values for which the minimum is attained. If the
problem is not bounded, @code{minimize_lp} returns "Problem not
bounded!" and if the problem is not feasible, it returns "Problem not
feasible!".

The decision variables are not assumed to be non-negative by default. If
all decision variables are non-negative, set @code{nonnegative_lp} to
@code{true} or include @code{all} in the optional argument @var{pos}. If
only some of decision variables are positive, list them in the optional
argument @var{pos} (note that this is more efficient than adding
constraints).

@code{minimize_lp} uses the simplex algorithm which is implemented in
maxima @code{linear_program} function.

To use this function first load the @code{simplex} package with
@code{load("simplex");}.

Examples:

@c ===beg===
@c minimize_lp(x+y, [3*x+y=0, x+2*y>2]);
@c minimize_lp(x+y, [3*x+y>0, x+2*y>2]), nonnegative_lp=true;
@c minimize_lp(x+y, [3*x+y>0, x+2*y>2], all);
@c minimize_lp(x+y, [3*x+y=0, x+2*y>2]), nonnegative_lp=true;
@c minimize_lp(x+y, [3*x+y>0]);
@c ===end===
@example
(%i1) minimize_lp(x+y, [3*x+y=0, x+2*y>2]);
                      4       6        2
(%o1)                [-, [y = -, x = - -]]
                      5       5        5
(%i2) minimize_lp(x+y, [3*x+y>0, x+2*y>2]), nonnegative_lp=true;
(%o2)                [1, [y = 1, x = 0]]
(%i3) minimize_lp(x+y, [3*x+y>0, x+2*y>2], all);
(%o3)                         [1, [y = 1, x = 0]]
(%i4) minimize_lp(x+y, [3*x+y=0, x+2*y>2]), nonnegative_lp=true;
(%o4)                Problem not feasible!
(%i5) minimize_lp(x+y, [3*x+y>0]);
(%o5)                Problem not bounded!

@end example

There is also a limited ability to solve linear programs with symbolic
constants.

@example
(%i1) declare(c,constant)$
(%i2) maximize_lp(x+y, [y<=-x/c+3, y<=-x+4], [x, y]), epsilon_lp=0;
Is (c-1)*c positive, negative or zero?
p;
Is c*(2*c-1) positive, negative or zero?
p;
Is c positive or negative?
p;
Is c-1 positive, negative or zero?
p;
Is 2*c-1 positive, negative or zero?
p;
Is 3*c-4 positive, negative or zero?
p;
                                 1                1
(%o2)                 [4, [x = -----, y = 3 - ---------]]
                                   1               1
                               1 - -          (1 - -) c
                                   c               c
@end example

@c ===beg===
@c (assume(c>4/3), declare(c,constant))$
@c maximize_lp(x+y, [y<=-x/c+3, y<=-x+4], [x, y]), epsilon_lp=0;
@c ===end===
@example
(%i1) (assume(c>4/3), declare(c,constant))$
(%i2) maximize_lp(x+y, [y<=-x/c+3, y<=-x+4], [x, y]), epsilon_lp=0;
                                 1                1
(%o2)                 [4, [x = -----, y = 3 - ---------]]
                                   1               1
                               1 - -          (1 - -) c
                                   c               c
@end example

See also: @mref{maximize_lp}, @mref{nonnegative_lp}, @mref{epsilon_lp}.

@opencatbox{Categories:}
@category{Package simplex}
@category{Numerical methods}
@closecatbox

@end deffn

@anchor{nonnegative_lp}
@defvr {Option variable} nonnegative_lp
@defvrx {Option variable} nonegative_lp
Default value: @code{false}

If @code{nonnegative_lp} is true all decision variables to
@code{minimize_lp} and @code{maximize_lp} are assumed to be non-negative.
@code{nonegative_lp} is a deprecated alias.
                   
See also: @mref{minimize_lp}.

@opencatbox{Categories:}
@category{Package simplex}
@closecatbox

@end defvr

@anchor{scale_lp}
@defvr {Option variable} scale_lp
Default value: @code{false}

When @code{scale_lp} is @code{true},
@code{linear_program} scales its input so that the maximum absolute value in each row or column is 1.

@opencatbox{Categories:}
@category{Package simplex}
@closecatbox

@end defvr

@anchor{pivot_count_sx}
@defvr {Variable} pivot_count_sx

After @code{linear_program} returns,
@code{pivot_count_sx} is the number of pivots in last computation.

@opencatbox{Categories:}
@category{Package simplex}
@closecatbox

@end defvr

@anchor{pivot_max_sx}
@defvr {Variable} pivot_max_sx

@code{pivot_max_sx} is the maximum number of pivots allowed by @code{linear_program}.

@opencatbox{Categories:}
@category{Package simplex}
@closecatbox

@end defvr