File: plotmaxima.html

package info (click to toggle)
maxima 5.47.0-9
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 193,104 kB
  • sloc: lisp: 434,678; fortran: 14,665; tcl: 10,990; sh: 4,577; makefile: 2,763; ansic: 447; java: 328; python: 262; perl: 201; xml: 60; awk: 28; sed: 15; javascript: 2
file content (55 lines) | stat: -rw-r--r-- 1,688 bytes parent folder | download | duplicates (15)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
<html>

<title>Maxima Plotting</title>
<body  BGCOLOR=#ffffff TEXT=#000000 LINK=#244C21>

<br>
<h4>Maxima 3d Plotting</h4>
<br>


<pre>
 - Function:<b> plot3d (expr, xrange, yrange,..., options,...)</b>
 - Function:<b> plot3d ([expr1,expr2,expr3], xrange, yrange,..., options,...)</b>
</pre>
When viewed with the netmath plotting routines, you can rotate the object
by dragging with the right mouse button depressed.  
<ul>
<li>  <eval program=maxima> plot3d(2^(-u^2+v^2),[u,-2,2],[v,-2,2]);</eval>
     would plot z = 2^(-u^2+v^2) with u and v varying in [-2,2] and
     [-2,2] respectively, and with u on the x axis, and v on the y axis.

<li> a <b>moebius band uses the second pattern of arguments</b>

<eval program=maxima>
plot3d([cos(x)*(3+y*cos(x/2)), sin(x)*(3+y*cos(x/2)), y*sin(x/2)],
       [x,-%pi,%pi],[y,-1,1],['grid,40,15]);</eval>
     <br>
parametrized by the 3 expressions given as the first
argument to plot3d.  An additional optional argument [grid,50,15]
gives the grid number of rectangles in the x direction and y
direction.

<li>A <b>Riemann surface</b>: Real part of z^1/3 
<eval program=maxima>
plot3d(r^.33*cos(th/3),[r,0,1],[th,0,6*%pi],
     ['grid,12,80],
     ['transform_xy,polar_to_xy]);</eval>

<li> a <b>Klein bottle</b>:
<eval program=maxima>
plot3d([5*cos(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0) - 10.0,
        -5*sin(x)*(cos(x/2)*cos(y)+sin(x/2)*sin(2*y)+3.0),
       5*(-sin(x/2)*cos(y)+cos(x/2)*sin(2*y))],
     [x,-%pi,%pi],[y,-%pi,%pi],['grid,40,40]);</eval>

<li>a <b>torus</b>
<eval program=maxima>
plot3d([cos(y)*(10.0+6*cos(x)),
        sin(y)*(10.0+6*cos(x)),
       -6*sin(x)],
      [x,0,2*%pi],[y,0,2*%pi], ['grid,20,20]);</eval>