1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/* copyright 2007 by Robert Dodier
* I release this file under the terms of the GNU General Public License.
*/
/* operations on amatrix objects */
matchdeclare ([A%, A1%, A2%], amatrixp);
matchdeclare ([X%, X1%, X2%], lambda ([e], not amatrixp (e)));
/* troublesome ??: tellsimp (is (A%), amatrixmap (is, A%)); */
tellsimpafter (A% < X%, amatrixmap (buildq ([X%], lambda ([a%], a% < X%)), A%));
tellsimpafter (A% <= X%, amatrixmap (buildq ([X%], lambda ([a%], a% <= X%)), A%));
tellsimpafter (A% = X%, amatrixmap (buildq ([X%], lambda ([a%], a% = X%)), A%));
tellsimpafter (equal (A%, X%), amatrixmap (buildq ([X%], lambda ([a%], equal (a%, X%))), A%));
tellsimpafter (notequal (A%, X%), amatrixmap (buildq ([X%], lambda ([a%], notequal (a%, X%))), A%));
tellsimpafter (A% # X%, amatrixmap (buildq ([X%], lambda ([a%], a% # X%)), A%));
tellsimpafter (A% >= X%, amatrixmap (buildq ([X%], lambda ([a%], a% >= X%)), A%));
tellsimpafter (A% > X%, amatrixmap (buildq ([X%], lambda ([a%], a% > X%)), A%));
tellsimpafter (X% < A%, amatrixmap (buildq ([X%], lambda ([a%], X% < a%)), A%));
tellsimpafter (X% <= A%, amatrixmap (buildq ([X%], lambda ([a%], X% <= a%)), A%));
tellsimpafter (X% = A%, amatrixmap (buildq ([X%], lambda ([a%], X% = a%)), A%));
tellsimpafter (equal (X%, A%), amatrixmap (buildq ([X%], lambda ([a%], equal (X%, a%))), A%));
tellsimpafter (notequal (X%, A%), amatrixmap (buildq ([X%], lambda ([a%], notequal (X%, a%))), A%));
tellsimpafter (X% # A%, amatrixmap (buildq ([X%], lambda ([a%], X% # a%)), A%));
tellsimpafter (X% >= A%, amatrixmap (buildq ([X%], lambda ([a%], X% >= a%)), A%));
tellsimpafter (X% > A%, amatrixmap (buildq ([X%], lambda ([a%], X% > a%)), A%));
tellsimpafter (A1% < A2%, amatrixmap ("<", A1%, A2%));
tellsimpafter (A1% <= A2%, amatrixmap ("<=", A1%, A2%));
tellsimpafter (A1% = A2%, amatrixmap ("=", A1%, A2%));
tellsimpafter (equal (A1%, A2%), amatrixmap ('equal, A1%, A2%));
tellsimpafter (notequal (A1%, A2%), amatrixmap ('notequal, A1%, A2%));
tellsimpafter (A1% # A2%, amatrixmap ("#", A1%, A2%));
tellsimpafter (A1% >= A2%, amatrixmap (">=", A1%, A2%));
tellsimpafter (A1% > A2%, amatrixmap (">", A1%, A2%));
tellsimpafter (not A%, amatrixmap ("not", A%));
tellsimpafter (A1% and A2%, amatrixmap (lambda ([a1%, a2%], a1% and a2%), A1%, A2%));
tellsimpafter (A1% or A2%, amatrixmap (lambda ([a1%, a2%], a1% or a2%), A1%, A2%));
/* implementation */
defstruct (amatrix (nr, r0, rinc, nc, c0, cinc, storage));
elements (m) := create_list (get_element (m, i, j), i, 1, m@nr, j, 1, m@nc);
make_matrix (nr, nc, [a]) := block
([aa : ?gensym()],
?putprop (aa, 1, '?refcount),
if a = []
then a : make_array (fixnum, nr*nc)
/* ELSE STORAGE ARRAY IS SPECIFIED; SHOULD VERIFY HERE THAT
* (1) IT IS 1-DIMENSIONAL, AND (2) IT IS BIG ENOUGH
*/
else a : a[1],
?putprop (aa, a, '?storage_array),
new (amatrix (nr, 0, 1, nc, 0, nr, aa)));
/* DECLARING A% SYMBOLP CAUSES TROUBLE IF STORAGE GENSYM IS EVALUATED ...
* CONSIDER ATTACHING ARRAY TO GENSYM AS A PROPERTY INSTEAD OF A VALUE (SIGH)
*/
matchdeclare
(a%, symbolp,
[LI%, LI1%, LI2%], integer_listp,
[MB%, MB1%, MB2%], putative_boolean_amatrixp,
[ii%, jj%, i0%, j0%, u%, v%, x%, y%], integerp);
integer_listp (e) := not atom(e) and op(e) = "[" and every (integerp, e);
putative_boolean_amatrixp (e) :=
not atom(e)
and op(e) = amatrix
and every (lambda ([x], not atom(x) or booleanp(x)), elements (e));
booleanp (e) := is (e = true or e = false);
/* USEFUL FOR DEBUGGING
announce_rules_firing : true;
*/
incprop (aa, bb) := ?putprop (aa, ?get (aa, bb) + 1, bb);
decprop (aa, bb) := ?putprop (aa, ?get (aa, bb) - 1, bb);
simp : false;
get_element (m%, ii%, jj%) :=
get_element_internal (m%@nr, m%@r0, m%@rinc, m%@nc, m%@c0, m%@cinc, m%@storage, ii%, jj%);
get_element_internal (u%, i0%, x%, v%, j0%, y%, a%, ii%, jj%) := block
([a% : ?get (a%, '?storage_array),
i% : (i0% + ii% - 1)*x% + (j0% + jj% - 1)*y%],
if ii% < 1 or jj% < 1 or ii% > u% or jj% > v%
then error ("Matrix index out of bounds")
else ?aref (a%, i%));
/* one integer */
tellsimpafter
(amatrix (1, i0%, x%, v%, j0%, y%, a%) [ii%],
get_element_internal (1, i0%, x%, v%, j0%, y%, a%, 1, ii%));
tellsimpafter
(amatrix (u%, i0%, x%, 1, j0%, y%, a%) [ii%],
get_element_internal (u%, i0%, x%, 1, j0%, y%, a%, ii%, 1));
/* integers both */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [ii%, jj%],
get_element_internal (u%, i0%, x%, v%, j0%, y%, a%, ii%, jj%));
/* one 'all */
tellsimpafter
(amatrix (1, i0%, x%, v%, j0%, y%, a%) [all],
(incprop (a%, '?refcount),
amatrix (1, i0%, x%, v%, j0%, y%, a%)));
tellsimpafter
(amatrix (u%, i0%, x%, 1, j0%, y%, a%) [all],
(incprop (a%, '?refcount),
amatrix (u%, i0%, x%, 1, j0%, y%, a%)));
/* 'all and an integer */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [all, jj%],
(incprop (a%, '?refcount),
amatrix (u%, i0%, x%, 1, j0% + jj% - 1, y%, a%)));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [ii%, all],
(incprop (a%, '?refcount),
amatrix (1, i0% + ii% - 1, x%, v%, j0%, y%, a%)));
/* 'all both */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [all, all],
(incprop (a%, '?refcount),
amatrix (u%, i0%, x%, v%, j0%, y%, a%)));
/* one list of integers */
tellsimpafter
(amatrix (1, i0%, x%, v%, j0%, y%, a%) [LI%],
submatrix_by_indices (1, i0%, x%, v%, j0%, y%, a%, [1], LI%));
tellsimpafter
(amatrix (u%, i0%, x%, 1, j0%, y%, a%) [LI%],
submatrix_by_indices (u%, i0%, x%, 1, j0%, y%, a%, LI%, [1]));
/* list of integers and an integer */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [ii%, LI%],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, [ii%], LI%));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [LI%, jj%],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI%, [jj%]));
/* list of integers and 'all */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [all, LI%],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, makelist (i, i, 1, u%), LI%));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [LI%, all],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI%, makelist (i, i, 1, v%)));
/* lists of integers both */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [LI1%, LI2%],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI2%));
/* one amatrix of booleans */
tellsimpafter
(amatrix (1, i0%, x%, v%, j0%, y%, a%) [MB%],
submatrix_by_indices_and_flags (1, i0%, x%, v%, j0%, y%, a%, [1], MB%));
tellsimpafter
(amatrix (u%, i0%, x%, 1, j0%, y%, a%) [MB%],
submatrix_by_flags_and_indices (u%, i0%, x%, 1, j0%, y%, a%, MB%, [1]));
/* amatrix of booleans and an integer */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [ii%, MB%],
submatrix_by_indices_and_flags (u%, i0%, x%, v%, j0%, y%, a%, [ii%], MB%));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [MB%, jj%],
submatrix_by_flags_and_indices (u%, i0%, x%, v%, j0%, y%, a%, MB%, [jj%]));
/* amatrix of booleans and 'all */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [all, MB%],
submatrix_by_all_and_flags (u%, i0%, x%, v%, j0%, y%, a%, MB%));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [MB%, all],
submatrix_by_flags_and_all (u%, i0%, x%, v%, j0%, y%, a%, MB%));
/* amatrix of booleans and a list of integers */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [LI%, MB%],
submatrix_by_indices_and_flags (u%, i0%, x%, v%, j0%, y%, a%, LI%, MB%));
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [MB%, LI%],
submatrix_by_flags_and_indices (u%, i0%, x%, v%, j0%, y%, a%, MB%, LI%));
/* amatrix of booleans both */
tellsimpafter
(amatrix (u%, i0%, x%, v%, j0%, y%, a%) [MB1%, MB2%],
submatrix_by_flags_and_flags (u%, i0%, x%, v%, j0%, y%, a%, MB1%, MB2%));
simp : true;
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI2%) := block
([M0 : amatrix (u%, i0%, x%, v%, j0%, y%, a%),
M : make_matrix (length (LI1%), length (LI2%)),
?\*afterflag : false],
/* Do this the simple way.
* Probably some special cases could be faster.
*/
for i:1 thru nrows(M)
do for j:1 thru ncols(M)
do M[i, j] : get_element (M0, LI1%[i], LI2%[j]),
M);
submatrix_by_indices_and_flags (u%, i0%, x%, v%, j0%, y%, a%, LI%, MB%) := block
([LI2% : sublist_indices (elements (MB%), lambda ([x], is (is(x) = true)))],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI%, LI2%));
submatrix_by_flags_and_indices (u%, i0%, x%, v%, j0%, y%, a%, MB%, LI%) := block
([LI1% : sublist_indices (elements (MB%), lambda ([x], is (is(x) = true)))],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI%));
submatrix_by_all_and_flags (u%, i0%, x%, v%, j0%, y%, a%, MB%) := block
([LI1% : makelist (i, i, 1, u%),
LI2% : sublist_indices (elements (MB%), lambda ([x], is (is(x) = true)))],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI2%));
submatrix_by_flags_and_all (u%, i0%, x%, v%, j0%, y%, a%, MB%) := block
([LI1% : sublist_indices (elements (MB%), lambda ([x], is (is(x) = true)))],
LI2% : makelist (i, i, 1, v%),
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI2%));
submatrix_by_flags_and_flags (u%, i0%, x%, v%, j0%, y%, a%, MB1%, MB2%) := block
([LI1% : sublist_indices (elements (MB1%), lambda ([x], is (is(x) = true))),
LI2% : sublist_indices (elements (MB2%), lambda ([x], is (is(x) = true)))],
submatrix_by_indices (u%, i0%, x%, v%, j0%, y%, a%, LI1%, LI2%));
t(m):=
(incprop (m@storage, '?refcount),
amatrix
(m@nc, m@c0,
if m@rinc = 1 then m@nr else 1,
m@nr, m@r0,
if m@cinc = 1 then m@nc else 1,
m@storage));
compute_index1 (aa, i, j) :=
if i < 1 or j < 1 or i > aa@nr or j > aa@nc
then error ("Matrix index out of bounds")
else 1 + (aa@r0 + i - 1)*aa@rinc + (aa@c0 + j - 1)*aa@cinc;
compute_index0 (aa, i, j) :=
if i < 0 or j < 0 or i >= aa@nr or j >= aa@nc
then error ("Matrix index out of bounds")
else (aa@r0 + i)*aa@rinc + (aa@c0 + j)*aa@cinc;
/* REVISIT THE FOLLOWING !! IT IS BROKEN AS IT STANDS !! */
copy_amatrix (m) :=
if atom(m) or op(m) # 'amatrix
then copy (m)
else
(incprop (m@storage, '?refcount),
amatrix (m@nr, m@r0, m@rinc, m@nc, m@c0, m@cinc, m@storage));
/* copy(m) copies everything but the storage array -- that's just what we want */
/* comment out until storage is actually an array
block ([m2 : copy(m)], m2@refcount : m2@refcount + 1, m2);
*/
copy_array (a) := if ?arrayp (a) then ?copy\-seq (a) else ?copy\-tree (a);
if not ?get ('amatrix, 'present) then load ("amatrix.lisp");
/* SHOULD TRY TO MERGE THIS WITH EXISTING MEAN FUNCTION IN SHARE PACKAGE DESCRIPTIVE */
amatrix_mean (x) := block
([m : nrows(x),
n : ncols(x)],
if n=1
then 1/m * sum (x [i], i, 1, m)
else makelist (mean (x [all, j]), j, 1, n));
matchdeclare (A%, amatrixp);
tellsimp (mean (A%), amatrix_mean (A%));
/* FOLLOWING NEEDED MOSTLY FOR TESTING ALTHOUGH IT WOULD BE OK TO LEAVE IT IN */
random_matrix (nr, nc) := block
([M : make_matrix (nr, nc), A],
A : ?get (M@storage, '?storage_array),
for i from 0 thru nr*nc-1
do A[i] : floor (random (256.0)) / 256.0,
M);
new2old_matrix (M) :=
if nrows(M) = 0 or ncols(M) = 0
then matrix()
else genmatrix (lambda ([i, j], get_element (M, i, j)), nrows(M), ncols(M));
old2new_matrix (M) := block ([nr, nc, M2],
nr : length (M),
nc : if nr = 0 then 0 else length (M [1]),
M2 : make_matrix (nr, nc),
for i thru nr
do for j thru nc
do M2 [i, j] : M [i, j],
M2);
|